Title: | Some Hölder-logarithmic estimates on Hardy-Sobolev spaces (English) |
Author: | Feki, Imed |
Author: | Massoudi, Ameni |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 3 |
Year: | 2024 |
Pages: | 787-800 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces $H^{k,p}(G)$, where $k \in {\mathbb N}^*$, $1\leq p\leq \infty $ and $G$ is either the open unit disk ${\mathbb D}$ or the annular domain $G_s$, $0<s<1$ of the complex space ${\mathbb C}$. More precisely, we study the behavior on the interior of $G$ of any function $f$ belonging to the unit ball of the Hardy-Sobolev spaces $H^{k,p}(G)$ from its behavior on any open connected subset $I$ of the boundary $\partial G$ of $G$ with respect to the $L^1$-norm. Our results can be viewed as an improvement and generalization of those established in S. Chaabane, I. Feki (2009), I. Feki, H. Nfata, F. Wielonsky (2012), I. Feki (2013), I. Feki, H. Nfata (2014). As an application, we establish a logarithmic stability results for the Cauchy problem of the identification of Robin's coefficient by boundary measurements. (English) |
Keyword: | Hardy-Sobolev space |
Keyword: | annular domain |
Keyword: | Kernel function |
MSC: | 30C40 |
MSC: | 30H05 |
MSC: | 30H10 |
MSC: | 35R30 |
idZBL: | Zbl 07953678 |
idMR: | MR4804960 |
DOI: | 10.21136/CMJ.2024.0552-23 |
. | |
Date available: | 2024-10-03T12:36:41Z |
Last updated: | 2024-12-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152581 |
. | |
Reference: | [1] Alessandrini, G., Piere, L. Del, Rondi, L.: Stable determination of corrosion by a single electrostatic boundary measurement.Inverse Probl. 19 (2003), 973-984. Zbl 1050.35134, MR 2005313, 10.1088/0266-5611/19/4/312 |
Reference: | [2] Baratchart, L., Mandréa, F., Saff, E. B., Wielonsky, F.: 2D inverse problems for the Laplacian: A meromorphic approximation approach.J. Math. Pures Appl. (9) 86 (2006), 1-41. Zbl 1106.35129, MR 2246355, 10.1016/j.matpur.2005.12.001 |
Reference: | [3] Baratchart, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk.J. Comput. Appl. Math. 46 (1993), 255-269. Zbl 0818.65017, MR 1222486, 10.1016/0377-0427(93)90300-Z |
Reference: | [4] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$.C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. Zbl 1181.46023, MR 2554565, 10.1016/j.crma.2009.07.018 |
Reference: | [5] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains.Stud. Math. 136 (1999), 255-269. Zbl 0952.30033, MR 1724247, 10.4064/sm-136-3-255-269 |
Reference: | [6] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces.J. Oper. Theory 6 (1981), 375-405. Zbl 0525.47004, MR 0643698 |
Reference: | [7] Duren, P. L.: Theory of $H^p$ Spaces.Pure and Applied Mathematics 38. Academic Press, New York (1970). Zbl 0215.20203, MR 0268655, 10.1016/s0079-8169(08)x6157-4 |
Reference: | [8] Feki, I.: Estimates in the Hardy-Sobolev space of the annulus and stability result.Czech. Math. J. 63 (2013), 481-495. Zbl 1289.30231, MR 3073973, 10.1007/s10587-013-0032-2 |
Reference: | [9] Feki, I., Nfata, H.: On $L^p-L^1$ estimates of logarithmic-type in Hardy-Sobolev spaces of the disk and the annulus.J. Math. Anal. Appl. 419 (2014), 1248-1260. Zbl 1293.30073, MR 3225432, 10.1016/j.jmaa.2014.05.042 |
Reference: | [10] Feki, I., Nfata, H., Wielonsky, F.: Optimal logarithmic estimates in the Hardy-Sobolev space of the disk and stability results.J. Math. Anal. Appl. 395 (2012), 366-375. Zbl 1250.30051, MR 2943628, 10.1016/j.jmaa.2012.05.055 |
Reference: | [11] Hardy, G. H.: The mean value of the modulus of an analytic function.Proc. Lond. Math. Soc. (2) 14 (1915), 269-277 \99999JFM99999 45.1331.03. 10.1112/plms/s2_14.1.269 |
Reference: | [12] Leblond, J., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: Stability results.J. Inverse Ill-Posed Probl. 14 (2006), 189-204. Zbl 1111.35121, MR 2242304, 10.1515/156939406777571049 |
Reference: | [13] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy-Sobolev space of an annular domain with applications.J. Math. Anal. Appl. 358 (2009), 98-109. Zbl 1176.46029, MR 2527584, 10.1016/j.jmaa.2009.04.040 |
Reference: | [14] Miller, P. D.: Applied Asymptotic Analysis.Graduate Studies in Mathematics 75. AMS, Providence (2006). Zbl 1101.41031, MR 2238098, 10.1090/gsm/075 |
Reference: | [15] Nirenberg, L.: An extended interpolation inequality.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. Zbl 0163.29905, MR 0208360 |
Reference: | [16] Rudin, W.: Analytic functions of class $H_p$.Trans. Am. Math. Soc. 78 (1955), 46-66. Zbl 0064.31203, MR 0067993, 10.1090/S0002-9947-1955-0067993-3 |
Reference: | [17] Sarason, D.: The $H^p$ spaces of an annulus.Mem. Am. Math. Soc. 56 (1965), 78 pages. Zbl 0127.07002, MR 0188824, 10.1090/memo/0056 |
Reference: | [18] Wang, H.-C.: Real Hardy spaces of an annulus.Bull. Austr. Math. Soc. 27 (1983), 91-105. Zbl 0512.42023, MR 0696647, 10.1017/S0004972700011515 |
. |
Fulltext not available (moving wall 24 months)