Title: | The $\circ $ operation and $*$ operation of Cohen-Macaulay bipartite graphs (English) |
Author: | Yang, Yulong |
Author: | Zhu, Guangjun |
Author: | Cui, Yijun |
Author: | Duan, Shiya |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 3 |
Year: | 2024 |
Pages: | 735-757 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $G$ be a finite simple graph with the vertex set $V$ and let $I_G$ be its edge ideal in the polynomial ring $S= \mathbb {K} [V]$. We compute the depth and the Castelnuovo-Mumford regularity of $S/I_G$ when $G=G_1\circ G_2$ or $G=G_1* G_2$ is a graph obtained from Cohen-Macaulay bipartite graphs $G_1$, $G_2$ by the $\circ $ operation or $*$ operation, respectively. (English) |
Keyword: | regularity |
Keyword: | depth |
Keyword: | $\circ $ operation |
Keyword: | $*$ operation |
Keyword: | Cohen-Macaulay bipartite graph |
MSC: | 05E40 |
MSC: | 13A15 |
MSC: | 13C15 |
MSC: | 13D02 |
idZBL: | Zbl 07953675 |
idMR: | MR4804957 |
DOI: | 10.21136/CMJ.2024.0438-23 |
. | |
Date available: | 2024-10-03T12:35:01Z |
Last updated: | 2024-12-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152578 |
. | |
Reference: | [1] Banerjee, A., Beyarslan, S. K., Hà, H. T.: Regularity of edge ideals and their powers.Advances in Algebra Springer Proceedings in Mathematics & Statistics 277. Springer, Cham (2019), 17-52. Zbl 1418.13014, MR 3922638, 10.1007/978-3-030-11521-0_2 |
Reference: | [2] Bıyıkoğlu, T., Civan, Y.: Vertex-decomposable graphs, codismantlability, Cohen-Macaulayness and Castelnuovo-Mumford regularity.Electron. J. Comb. 21 (2014), Article ID P1.1, 17 pages. Zbl 1305.13007, MR 3177496, 10.37236/2387 |
Reference: | [3] Bolognini, D., Macchia, A., Strazzanti, F.: Binomial edge ideals of bipartite graphs.Eur. J. Comb. 70 (2018), 1-25. Zbl 1384.05094, MR 3779601, 10.1016/j.ejc.2017.11.004 |
Reference: | [4] Bondy, J. A., Murty, U. S. R.: Graph Theory.Graduate Texts in Mathematics 244. Springer, Berlin (2008). Zbl 1134.05001, MR 2368647, 10.1007/978-1-84628-970-5 |
Reference: | [5] Francisco, C. A., Hà, H. T., Tuyl, A. Van: Splittings of monomial ideals.Proc. Am. Math. Soc. 137 (2009), 3271-3282. Zbl 1180.13018, MR 2515396, 10.1090/S0002-9939-09-09929-8 |
Reference: | [6] Fouli, L., Hà, H. T., Morey, S.: Initially regular sequences and depths of ideals.J. Algebra 559 (2020), 33-57. Zbl 1442.13029, MR 4093701, 10.1016/j.jalgebra.2020.03.027 |
Reference: | [7] Fouli, L., Morey, S.: A lower bound for depths of powers of edge ideals.J. Algebr. Comb. 42 (2015), 829-848. Zbl 1330.05174, MR 3403183, 10.1007/s10801-015-0604-3 |
Reference: | [8] Hà, H. T., Tuyl, A. Van: Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers.J. Algebr. Comb. 27 (2008), 215-245. Zbl 1147.05051, MR 2375493, 10.1007/s10801-007-0079-y |
Reference: | [9] Herzog, J.: A generalization of the Taylor complex construction.Commun. Algebra 35 (2007), 1747-1756. Zbl 1121.13013, MR 2317642, 10.1080/00927870601139500 |
Reference: | [10] Herzog, J., Hibi, T.: Distributive lattices, bipartite graphs and Alexander duality.J. Algebr. Comb. 22 (2005), 289-302. Zbl 1090.13017, MR 2181367, 10.1007/s10801-005-4528-1 |
Reference: | [11] Herzog, J., Hibi, T.: Monomial Ideals.Graduate Texts in Mathematics 260. Springer, London (2011). Zbl 1206.13001, MR 2724673, 10.1007/978-0-85729-106-6 |
Reference: | [12] Herzog, J., Moradi, S., Rahimbeigi, M.: The edge ideal of a graph and its splitting graphs.J. Commut. Algebra 14 (2022), 27-35. Zbl 1492.13026, MR 4436334, 10.1216/jca.2022.14.27 |
Reference: | [13] Hoa, L. T., Tam, N. D.: On some invariants of a mixed product of ideals.Arch. Math. 94 (2010), 327-337. Zbl 1191.13032, MR 2643966, 10.1007/s00013-010-0112-6 |
Reference: | [14] Kalai, G., Meshulam, R.: Intersections of Leray complexes and regularity of monomial ideals.J. Comb. Theory, Ser. A 113 (2006), 1586-1592. Zbl 1105.13026, MR 2259083, 10.1016/j.jcta.2006.01.005 |
Reference: | [15] Katzman, M.: Characteristic-independence of Betti numbers of graph ideals.J. Comb. Theory, Ser. A 113 (2006), 435-454. Zbl 1102.13024, MR 2209703, 10.1016/j.jcta.2005.04.005 |
Reference: | [16] Khosh-Ahang, F., Moradi, S.: Regularity and projective dimension of edge ideal of $C_5$-free vertex decomposable graphs.Proc. Am. Math. Soc. 142 (2014), 1567-1576. Zbl 1297.13019, MR 3168464, 10.1090/S0002-9939-2014-11906-X |
Reference: | [17] Kummini, M.: Regularity, depth and arithmetic rank of bipartite edge ideals.J. Algebr. Comb. 30 (2009), 429-445. Zbl 1203.13018, MR 2563135, 10.1007/s10801-009-0171-6 |
Reference: | [18] Mahmoudi, M., Mousivand, A., Crupi, M., Rinaldo, G., Terai, N., Yassemi, S.: Vertex decomposability and regularity of very well-covered graphs.J. Pure Appl. Algebra 215 (2011), 2473-2480. Zbl 1227.13017, MR 2793950, 10.1016/j.jpaa.2011.02.005 |
Reference: | [19] Morey, S., Villarreal, R. H.: Edge ideals: Algebraic and combinatorial properties.Progress in Commutative Algebra 1 Walter de Gruyter, Berlin (2012), 85-126. Zbl 1246.13001, MR 2932582, 10.1515/9783110250404.85 |
Reference: | [20] Shen, Y. H., Zhu, G.: Generalized binomial edge ideals of bipartite graphs.Available at https://arxiv.org/abs/2305.05365 (2023), 31 pages. MR 4794080, 10.48550/arXiv.2305.05365 |
Reference: | [21] Tuyl, A. Van: Sequentially Cohen-Macaulay bipartite graphs: Vertex decomposability and regularity.Arch. Math. 93 (2009), 451-459. Zbl 1184.13062, MR 2563591, 10.1007/s00013-009-0049-9 |
Reference: | [22] Villarreal, R. H.: Monomial Algebras.Pure and Applied Mathematics, Marcel Dekker 238. Marcel Dekker, New York (2001). Zbl 1002.13010, MR 1800904 |
Reference: | [23] Woodroofe, R.: Matchings, coverings, and Castelnuovo-Mumford regularity.J. Commut. Algebra 6 (2014), 287-304. Zbl 1330.13040, MR 3249840, 10.1216/JCA-2014-6-2-287 |
Reference: | [24] Zhu, G.: Projective dimension and regularity of the path ideals of the line graph.J. Algebra Appl. 17 (2018), Article ID 1850068, 15 pages. Zbl 1394.13019, MR 3786747, 10.1142/S0219498818500688 |
Reference: | [25] Zhu, G.: Projective dimension and regularity of path ideals of cycles.J. Algebra Appl. 17 (2018), Article ID 1850188, 22 pages. Zbl 1407.13014, MR 3866761, 10.1142/S0219498818501888 |
Reference: | [26] Zhu, G., Cui, Y., Yang, Y., Yang, Y.: The $\circ$ operation and $*$ operation of fan graphs.Available at https://arxiv.org/abs/2308.06010 (2023), 18 pages. 10.48550/arXiv.2308.06010 |
. |
Fulltext not available (moving wall 24 months)