Previous |  Up |  Next

Article

Title: The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated (English)
Author: Moreno-Frías, Maria Angeles
Author: Rosales, José Carlos
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 3
Year: 2024
Pages: 439-454
Summary lang: English
.
Category: math
.
Summary: Let $\Delta $ be a numerical semigroup. In this work we show that $\mathcal {J}(\Delta ) =\{I\cup \nobreak \{0\}\colon I \mbox { is an ideal of } \Delta \}$ is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows us to compute the set $\mathcal {J}_a(\Delta )=\{S\in \mathcal {J}(\Delta )\colon \max (\Delta \backslash S)=a\}$ for a given $a\in \Delta .$ As a consequence, we obtain another algorithm that computes all the elements of $\mathcal {J}(\Delta )$ with a fixed genus. (English)
Keyword: numerical semigroup
Keyword: ideal
Keyword: Frobenius restricted variety
Keyword: embedding dimension
Keyword: Frobenius number
Keyword: restricted Frobenius number
Keyword: genus
Keyword: multiplicity
Keyword: Arf numerical semigroup
Keyword: saturated semigroup
MSC: 11Y16
MSC: 20M14
idZBL: Zbl 07953713
idMR: MR4801112
DOI: 10.21136/MB.2023.0038-23
.
Date available: 2024-09-11T13:50:14Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152544
.
Reference: [1] Arf, C.: Une interprétation algébrique de la suite des ordres de multiplicité d'une branche algébrique.Proc. Lond. Math. Soc., II. Ser. 50 (1948), 256-287 French. Zbl 0031.07002, MR 0031785, 10.1112/plms/s2-50.4.256
Reference: [2] Barucci, V.: Decomposition of ideals into irreducible ideals in numerical semigroups.J. Commut. Algebra 2 (2010), 281-294. Zbl 1237.20056, MR 2728145, 10.1216/JCA-2010-2-3-281
Reference: [3] Barucci, V., Dobbs, D. E., Fontana, M.: Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analitycally Irreducible Local Domains.Memoirs of the American Mathematical Society 598. AMS, Providence (1997),\99999DOI99999 10.1090/memo/0598 . Zbl 0868.13003, MR 1357822
Reference: [4] Campillo, A.: On saturations of curve singularities (any characteristic).Singularities. Part 1 Proceedings of Symposia in Pure Mathematics 40. AMS, Providence (1983), 211-220. Zbl 0553.14013, MR 0713060, 10.1090/pspum/040.1
Reference: [5] Mata, F. Delgado de la, Jiménez, C. A. Núñez: Monomial rings and saturated rings.Géométrie algébrique et applications I Travaux en Cours 22. Hermann, Paris (1987), 23-34. Zbl 0636.14009, MR 0907904
Reference: [6] Lipman, J.: Stable ideals and Arf rings.Am. J. Math. 93 (1971), 649-685. Zbl 0228.13008, MR 0282969, 10.2307/2373463
Reference: [7] Moreno-Frías, M. A., Rosales, J. C.: Counting the ideals with given genus of a numerical semigroup.J. Algebra Appl. 22 (2023), Article ID 2330002, 21 pages. Zbl 07709969, MR 4598665, 10.1142/S0219498823300027
Reference: [8] Núñez, A.: Algebro-geometric properties of saturated rings.J. Pure Appl. Algebra 59 (1989), 201-214. Zbl 0701.14026, MR 1007922, 10.1016/0022-4049(89)90135-7
Reference: [9] Pham, F.: Fractions lipschitziennes et saturations de Zariski des algèbres analytiques complexes.Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 Gautier-Villars, Paris (1971), 649-654 French. Zbl 0245.32003, MR 0590058
Reference: [10] Robles-Pérez, A. M., Rosales, J. C.: Frobenius restricted varieties in numerical semigroups.Semigroup Forum 97 (2018), 478-492. Zbl 1448.20050, MR 3881853, 10.1007/s00233-018-9949-y
Reference: [11] Rosales, J. C.: Principal ideals of numerical semigroups.Bull. Belg. Math. Soc. - Simon Stevin 10 (2003), 329-343. Zbl 1051.20026, MR 2016807, 10.36045/bbms/1063372340
Reference: [12] Rosales, J. C., García-Sánchez, P. A.: Numerical Semigroups.Developments in Mathematics 20. Springer, New York (2009). Zbl 1220.20047, MR 2549780, 10.1007/978-1-4419-0160-6
Reference: [13] Zariski, O.: General theory of saturation and of saturated local rings I. Saturation of complete local domains of dimension one having arbitrary coefficient fields (of characteristic zero).Am. J. Math. 93 (1971), 573-684. Zbl 0226.13013, MR 0282972, 10.2307/2373462
Reference: [14] Zariski, O.: General theory of saturation and of saturated local rings II. Saturated local rings of dimension 1.Am. J. Math. 93 (1971), 872-964 \99999DOI99999 10.2307/2373741 . Zbl 0228.13007, MR 0299607
Reference: [15] Zariski, O.: General theory of saturation and of saturated local rings III. Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces.Am. J. Math. 97 (1975), 415-502. Zbl 0306.13009, MR 0389893, 10.2307/2373720
.

Files

Files Size Format View
MathBohem_149-2024-3_11.pdf 260.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo