[3] Adams, R. A., Fournier, J. J. F.:
Sobolev Spaces. Pure and Mathematics 140. Elsevier, Amsterdam (2003).
MR 2424078 |
Zbl 1098.46001
[4] Antontsev, S., Shmarev, S.:
Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up. Atlantis Studies in Differential Equations 4. Atlantis Press, Amsterdam (2015).
MR 3328376 |
Zbl 1410.35001
[15] Eleuteri, M.:
Hölder continuity results for a class of functionals with non-standard growth. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 7 (2004), 129-157.
MR 2044264 |
Zbl 1178.49045
[23] Gordadze, E., Meskhi, A., Ragusa, M. A.:
On some extrapolation in generalized grand Morrey spaces and applications to partial differential equations. Trans. A. Razmadze Math. Inst. 176 (2022), 435-441.
MR 4524235 |
Zbl 1522.42052
[24] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.:
Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574.
DOI 10.1016/j.na.2010.02.033 |
MR 2639204 |
Zbl 1188.35072
[25] Harjulehto, P., Kuusi, T., Lukkari, T., Marola, N., Parviainen, M.:
Harnack's inequality for quasiminimizers with nonstandard growth conditions. J. Math. Anal. Appl. 344 (2008), 504-520.
DOI 10.1016/j.jmaa.2008.03.018 |
MR 2416324 |
Zbl 1145.49023
[31] Rădulescu, V. D., Repovš, D. D.:
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015).
DOI 10.1201/b18601 |
MR 3379920 |
Zbl 1343.35003
[37] Yu, C., Ri, D.:
Global $L^\infty$-estimates and Hölder continuity of weak solutions to elliptic equations with the general nonstandard growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 156 (2017), 144-166.
DOI 10.1016/j.na.2017.02.019 |
MR 3634773 |
Zbl 1375.35127