[1] Abu Muriefah, F.S., Arif, S.A.:
The Diophantine equation $x^2 + 5^{2k+1} = y^n$. Indian J. Pure Appl. Math. 30 (3) (1999), 229–231.
MR 1686079
[7] Bilu, Y., Hanrot, G., Voutier, P.M.:
Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math. 539 (2001), 75–122.
MR 1863855 |
Zbl 0995.11010
[10] Chakraborty, K., Hoque, A.:
On the Diophantine equation $dx^2+p^{2a}q^{2b}=4y^p$. Results Math. 77 (1) (2022), 11 pp., article no. 18.
MR 4344843
[11] Chakraborty, K., Hoque, A., Sharma, R.:
Complete solutions of certain Lebesgue-Ramanujan-Nagell equations. Publ. Math. Debrecen 97 (3/4) (2020), 339–352.
DOI 10.5486/PMD.2020.8752 |
MR 4194065
[12] Chakraborty, K., Hoque, A., Sharma, R.:
On the solutions of certain Lebesgue-Ramanujan-Nagell equations. Rocky Mountain J. Math. 51 (2) (2021), 459–471.
DOI 10.1216/rmj.2021.51.459 |
MR 4278721
[14] Cohn, J.H.E.:
Square Fibonacci numbers, etc. Fibonacci Quart. 2 (2) (1964), 109–113.
MR 0161819
[17] Demirci, M.:
On the Diophantine equation $x^2 + 5^a p^b = y^n$. Filomat 31 (16) (2017), 5263–5269.
MR 3733500
[18] Gou, S., Wang, T.T.:
The Diophantine equation $x^2 + 2^a.17^b = y^n$. Czechoslovak Math. J. 62 (2012), 645–654.
MR 2984625
[20] Le, M., Soydan, G.:
A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation. Surv. Math. Appl. 15 (2020), 473–523.
MR 4118124
[21] Lebesgue, V.A.: Sur l’impossibilité, en nombres entiers, de l’équation $x^m =y^2+1$. Nouvelles Annales des Math. 9 (1850), 178 pp.
[23] Luca, F., Togbé, A.:
On the equation $x^2 + 2^\alpha 13^\beta = y^n$. Colloq. Math. 116 (1) (2009), 139–146.
MR 2504836
[24] Pink, I., Rábai, Z.:
On the Diophantine equation $x^2 + 5^k17^l = y^n$. Commun. Math. 19 (2011), 1–9.
MR 2855388
[25] Tao, L.:
On the Diophantine equation $x^2 + 5^m = y^n$. Ramanujan J. 19 (2009), 325–338.
MR 2529713
[26] Yuan, P.:
On the Diophantine equation $ax^2 + by^2 = ck^n$. Indag. Math. (N.S.) 16 (2) (2005), 301–320.
MR 2319301
[27] Zhu, H., Le, M., Soydan, G., Togbé, A.:
On the exponential Diophantine equation $x +2^a p^b = y^n$. Period. Math. Hungar. 70 (2015), 233–247.
MR 3344003