Title:
|
Asymptotic fuzzy contractive mappings in fuzzy metric spaces (English) |
Author:
|
Gopal, Dhananjay |
Author:
|
Martínez-Moreno, Juan |
Author:
|
Rodríguez-López, Rosana |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
60 |
Issue:
|
3 |
Year:
|
2024 |
Pages:
|
394-411 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research. However, due to the complexity involved in the nature of fuzzy metrics, the authors need to develop innovative machinery to establish new fixed point theorems in such kind of spaces. In this paper, we propose the concepts of asymptotic fuzzy $\psi$-contractive and asymptotic fuzzy Meir-Keeler mappings, and describe some new machinery by which the corresponding fixed point theorems are proved. In this sense, the techniques used for the proofs in Section 5 are completely new. (English) |
Keyword:
|
fuzzy metric space |
Keyword:
|
asymptotic fuzzy $\psi $-contractive mapping |
Keyword:
|
asymptotic fuzzy Meir–Keeler mapping |
Keyword:
|
fixed point |
MSC:
|
47H10 |
MSC:
|
54H25 |
DOI:
|
10.14736/kyb-2024-3-0394 |
. |
Date available:
|
2024-07-29T12:40:35Z |
Last updated:
|
2024-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152517 |
. |
Reference:
|
[1] Abbasi, N., Golshan, H. M.: Caristi's fixed point theorem and its equivalences in fuzzy metric spaces..Kybernetika 52 (2016), 6, 929-942. MR 3607855, |
Reference:
|
[2] Boyd, D. W., Wong, J. S. W.: On nonlinear contractions..Proc. Amer. Math. Soc. 20 (1969), 458-464. MR 0239559, |
Reference:
|
[3] George, A., Veeramani, P.: On some results in fuzzy metric spaces..Fuzzy Sets Systems 64 (1994), 395-399. Zbl 0843.54014, MR 1289545, |
Reference:
|
[4] Gopal, D., Abbas, M., Imdad, M.: $\psi$-weak contractions in fuzzy metric spaces..Iranian J. Fuzzy Syst. 8(5) (2011), 141-148. MR 2907800 |
Reference:
|
[5] Gopal, D., Martínez-Moreno, J.: Suzuki type fuzzy $\mathcal{Z}$-contractive mappings and fixed points in fuzzy metric spaces..Kybernetika 57 (2021), 6, 908-921. MR 4376867, |
Reference:
|
[6] Gopal, D., Vetro, C.: Some new fixed point theorems in fuzzy metric spaces..Iranian J. Fuzzy Syst. 11(3) (2014), 95-107. MR 3237493 |
Reference:
|
[7] Grabiec, M.: Fixed points in fuzzy metric spaces..Fuzzy Sets Systems 27 (1988), 385-389. Zbl 0664.54032, MR 0956385, |
Reference:
|
[8] Gregori, V., Miñana, J. J.: On fuzzy $\psi$-contractive mappings..Fuzzy Sets Systems 300 (2016), 93-101. MR 3226661, |
Reference:
|
[9] Gregori, V., Miñana, J. J., Roig, B., Sapena, A.: A characterization of $p$ complete fuzzy metric spaces..Fuzzy Sets Systems 444 (2022), 144-155. MR 4438147, |
Reference:
|
[10] Gregori, V., Sapena, A.: On fixed-point theorems in fuzzy metric spaces..Fuzzy Sets Systems 125 (2002), 245-252. MR 1880341, |
Reference:
|
[11] Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces..Kluwer Academic Publishers, Dordrecht 2001. Zbl 1265.54127, MR 1896451 |
Reference:
|
[12] Jachymski, J., Jóźwik, I.: On Kirk's asymptotic contractions..J. Math. Anal. Appl. 300 (2004), 147-1592. MR 2100243, |
Reference:
|
[13] Kirk, W. A.: Fixed points of asymptotic contractions..J. Math. Anal. Appl. 277 (2003), 645-650. MR 1961251, |
Reference:
|
[14] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer, Dordrecht 2000. Zbl 1087.20041, MR 1790096 |
Reference:
|
[15] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces..Kybernetica 15 (1975), 326-334. MR 0410633 |
Reference:
|
[16] Leader, S.: Uniformly contractive fixed points in compact metric spaces..Proc. Amer. Math. Soc. 86 (1982), 153-158. MR 0663887, |
Reference:
|
[17] Lindstrom, T., Ross, D. A.: A nonstandard approach to asymptotic fixed point theorems..J. Fixed Point Theory Appl. 25 (2023), 35. MR 4526053, |
Reference:
|
[18] Martínez-Moreno, J., Gopal, D., Rakoćević, V., Ranadive, A. S.: Caristi type mappings and characterization of completeness of Archimedean type fuzzy metric spaces..Adv. Computat. Intelligence 2 (2022), 1-7. |
Reference:
|
[19] Miheţ, D.: Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces..Fuzzy Sets Systems 159 (2008), 739-744. MR 2410532, |
Reference:
|
[20] Miñana, J. J., Sostak, A., Valero, O.: On metrization of fuzzy metrics and application to fixed point theory..Fuzzy Sets Systems 468 (2023), 108625. MR 4605381, |
Reference:
|
[21] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..Elsevier, New York 1983. Zbl 0546.60010, MR 0790314 |
Reference:
|
[22] Shoaib, A., Khaliq, K.: Fixed-point results for generalized contraction in K-sequentially complete ordered dislocated fuzzy quasimetric spaces..Fixed Point Theory Algor. Sci. Engrg. 27 (2022), 1-22. MR 4522842, |
Reference:
|
[23] Shoaib, A., Azam, A., Shahzad, A.: Common fixed point results for the family of multivalued mappings satisfying contractions on a sequence in Hausdorff fuzzy metric spaces..J. Comput. Anal. Appl. 24 (2018), 692-699. MR 3752551, |
Reference:
|
[24] Shukla, S., Gopal, D., Sintunavarat, W.: A new class of fuzzy contractive mappings and fixed point theorems..Fuzzy Sets Systems 350 (2018), 85-95. MR 3852589, |
Reference:
|
[25] Suzuki, T.: Fixed point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces..Nonlinear Anal. 64 (2006), 971-978. MR 2196804, |
Reference:
|
[26] Zheng, D., Wang, P.: Meir-Keeler theorems in fuzzy metric spaces..Fuzzy Sets Systems 370 (2019), 120-128. MR 3960172, |
. |