Previous |  Up |  Next

Article

Keywords:
multi-index transportation problem; fixed charge transportation problem; fuzzy mathematics; multi-objective problems
Summary:
In this paper, we propose a novel approach for solving a fuzzy bi-objective multi-index fixed-charge transportation problem where the aim is to minimize two objectives: the total transportation cost and transportation time. The parameters of the problem, such as fixed cost, variable cost, and transportation time are represented as fuzzy numbers. To extract crisp values from these parameters, a linear ranking function is used. The proposed approach initially separates the main problem into sub-problems. Then, it solves each sub-problem using different algorithms. After that, it determines the Pareto optimal solutions and trade-off pairs. To evaluate the performance of the proposed approach, various numerical problems of different sizes were solved. The results obtained are encouraging and show the efficiency of our approach.
References:
[1] Adlakha, V., Kowalski, K.: A simple heuristic for solving small fixed-charge transportation problems. OMEGA: Int. J. Management Sci. 31 (2003), 205-211. DOI 
[2] Adlakha, V., Kowalski, K., Lev, B.: A branching method for the fixed charge transportation problem. OMEGA: Int. J. Management Sci. 38 (2010), 393-397. DOI  | MR 2764169
[3] Ahuja, A., Arora, S. R.: Multi index fixed charge bi-criterion transportation problem. Indian J. Pure Appl. Math. 32 (2001), 739-746. MR 1839758
[4] Balinski, M. L.: Fixed cost transportation problems. Naval Res. Logist. Quarterly 8(1961), 41-54. DOI 
[5] El-Sherbiny, M. M., Alhamali, R. M.: A hybrid particle swarm algorithm with artificialimmune learning for solving the fixed charge transportation problem. Comput. Industr. Engrg, 64 (2013), 610-620. DOI 
[6] Gasilov, N., Amrahov, Ş. E., Fatullayev, A. G., Karakaş, H. I., AkIn, Ö.: Application of geometric approach for fuzzy linear systems to a fuzzy input-output analysis. CMES: Computer Model. Engrg. Sci. 75 (2011), 189-203. MR 2867758
[7] Gasilov, A. G., Fatullayev, S. E., Amrahov, Ş. E.: Solution of non-square fuzzy linear systems. Journal of Multiple-Valued Logic and Soft computing, 20 (2013), 221-237. MR 3059171
[8] Ghosh, S., Roy, S. K., Verdegay, J. L.: Multi-objective fully intuitionistic fuzzy fixed charge transportation problem. Complex Intell. Syst. 7 (2021), 1009-1023. DOI 
[9] Ghosh, S., Roy, S. K., Verdegay, J. L.: Fixed-charge solid transportation problem with budget constraints based on carbon emission in neutrosophic environment. Soft Comput. 26 (2022), 11611-11625. DOI 
[10] Ghosh, S., Küfer, K., Roy, S. K., Weber, G.: Type-2 zigzag uncertain multi-objective fixed-charge solid transportation problem: time window vs. preservation technology. Central Europ. J. Oper. Res. 31 (2023), 337-362 DOI  | MR 4537467
[11] Haley, K. B.: The Solid transportation problem. Oper. Res. 10 (1962), 448-463. DOI 
[12] Haque, S., Bhurjee, K., Kumar, P.: Multi-objective transportation problem with fixed charge budget constraints under uncertain environment. System Sci. Control Engrg. 10 (2022), 899-909. DOI 
[13] Hedid, M., Zitouni, R.: Solving the four-index fully fuzzy transportation problem. Croatian Oper. Res. Rev. 11 (2020), 199-215. DOI  | MR 4205955
[14] Hirsch, W. M., Dantzig, G. B.: The fixed charge problem. Naval Research Logistics Quarterly, 15 (1968), 413-424. DOI  | MR 0258464
[15] Kartli, N., Bostanci, E., Guzel, M. S.: A new algorithm for optimal solution of fixed charge transportation problem. Kybernetika 59 (2023), 45-63. DOI  | MR 4567841
[16] Khurana, A., Adlakha, V.: On multi-index fixed charge bi-criterion transportation problem. OPSEARCH 52 (2015), 733-745. DOI  | MR 3432877
[17] Kumar, A., Gupta, A., Sharma, M. K.: Solving fuzzy bi-criterion fixed charge transportation problem using a new fuzzy algorithm. Int. J. Appl. Sci. Engrg. 8 (2010), 77-98.
[18] Liou, T. S., Wang, M. J.: Ranking fuzzy numbers with integral value. Fuzzy Sets Systems 50 (1992), 247-255. DOI  | MR 1188295
[19] Lotfi, M., Tavakkoli-Moghaddam, R.: A genetic algorithm using priority based encoding with new operators for fixed charge transportation problems. Appl. Soft Comput. 13 (2013), 2711-2726. DOI 
[20] Maity, G., Yu, V. F., Roy, S. K.: Optimum intervention in transportation networks using multimodel system under stochastic environment. J. Adv. Transport. (2022).
[21] Mardanya, D., Roy, S. K.: The multi-objective multi-item just-in-time transportation problem. Optimization 71 (2022), 4665-4696. DOI  | MR 4527229
[22] Mardanya, D., Roy, S. K.: Time variant multi-objective linear fractional interval-valued transportation problem. Appl. Math. J. Chin. Univ. 37 (2022), 111-130. DOI  | MR 4396084
[23] Mardanya, D., Roy, S. K., Yu, V. F.: Solving the multi-model transportation problem via the rough interval approach. RAIRO Operations Research, 56 (2022), 3155-3185. DOI  | MR 4475689
[24] Mardanya, D., Roy, S. K.: New approach to solve fuzzy multi-objective multi-item solid transportation problem. RAIRO Oper. Res. 57 (2023), 99-120. DOI  | MR 4534569
[25] McKeown, P. G.: A vertex ranking procedure for solving the linear fixed charge problem. Oper. Res. (1975), 1183-1191. DOI 10.1287/opre.23.6.1183 | MR 0437033
[26] Molla-Alizadeh, S., Nezhad, S. Sadi, Tavakkoli-Moghaddam, R., Yazdani, M.: Solving a fuzzy fixed charge solid transportation problem by metaheuristics. Math. Comput. Modell. 57 (2013), 1543-1558. DOI  | MR 3034154
[27] Mondal, A., Roy, S. K., Midya, S.: Intuitionistic fuzzy sustainable multi-objective multi-item multi-choice step fixed-charge solid transportation problem. J Ambient Intell Human Comput, 14 (2023), 6975-6999. DOI 
[28] Palekar, U. S., Zionts, S.: A branch-and bound method for the fixed charge transportation problem. Management Sci. 36 (1990), 1092-1105. DOI  | MR 1073311
[29] Rousseau, J. M.: A Cutting Plane Method for the Fixed Cost Problem. Doctoral Dissertation. Massachusetts Institute of Technology, Cambridge 1973.
[30] Roy, S. K., Midya, S.: Multi-objective fixed-charge solid transportation problem with product blending under intuitionistic fuzzy environment. Appl Intell. 49 (2019), 3524-3538. DOI 
[31] Sadeghi-Moghaddam, S., Hajiaghaei-Keshteli, M., Mahmoodjamloo, M.: New approaches in metaheuristics to solve the fixed charge transportation problem in a fuzzy environment. Neural Comput. Appl. 31 (2017), 477-497. DOI 
[32] Sun, M., Aronson, J. E., Mckeown, P. G., Drinka, D.: A tabu search heuristic procedure for the fixed charge transportation problem. Europ. J. Oper. Res. 106 (1998), 441-456. DOI 
[33] Singh, S., Tuli, R., Sarode, D.: Pareto optimal solution of the fuzzy multi-index bi-criteria fixed charge transportation problem. Int. J. Fuzzy Math. Arch. 13 (2017), 199-212. DOI 
[34] Yousefi, K., Afshari, J., Hajiaghaei-Keshteli, M.: Solving the fixed charge transportation problem by new heuristic approach. J. Optim. Industr. Engrg. 2 (2019), 41-52.
[35] Zadeh, L.: Fuzzy sets. Inform. Control 8 (1965), 338-353. DOI  | MR 0219427 | Zbl 0942.00007
[36] Zitouni, R., Achache, M.: A numerical comparison between two exact methods for solving a capacitated 4-index transportation problem. J. Numer. Anal. Approx. Theory 46 (2017), 181-192. DOI  | MR 3724636
[37] Zitouni, R., Keraghel, A.: Resolution of a capacitated transportation problem with four subscripts. Kybernetes 32 (2003), 1450-1463. DOI 
[38] Zitouni, R., Keraghel, A.: A note on the algorithm of resolution of a capacitated transportation problem with four subscripts. Fast East J. Math. Sci. (FJMS) 26 (2007), 769-778. MR 2359643
Partner of
EuDML logo