Previous |  Up |  Next

Article

Keywords:
Kirchhoff-Carrier equation; Robin-Dirichlet problem; nonlocal term; Faedo-Galerkin method; linearization method
Summary:
We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values $u(\eta _{1},t),\cdots ,u(\eta _{q},t)$ with $0\leq \eta _{1}<\eta _{2}<\cdots <\eta _{q}<1.$ By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case $({\rm P}_{q})$ of (P) in which the nonlinear term contains the sum $S_{q}[u^{2}](t)=q^{-1}\sum _{i=1}^{q}u^{2}(\frac{(i-1)}{q},t)$. Under suitable conditions, we prove that the solution of $({\rm P}_{q})$ converges to the solution of the corresponding problem $({\rm P}_{\infty })$ as $q\rightarrow \infty $ (in a certain sense), here $({\rm P}_{\infty })$ is defined by $({\rm P}_{q})$ in which $S_{q}[u^{2}](t)$ is replaced by $ \int _{0}^{1}u^{2}( y,t) {\rm d}y.$ The proof is done by using the compactness lemma of Aubin-Lions and the method of continuity with a priori estimates. We end the paper with remarks related to similar problems.
References:
[1] Agarwal, R. P.: Boundary Value Problems for Higher Order Differential Equations. World Scientific, Singapore (1986). DOI 10.1142/0266 | MR 1021979 | Zbl 0619.34019
[2] Andreu-Vaillo, F., Mazón, J. M., Rossi, J. D., Toledo-Melero, J. J.: Nonlocal Diffusion Problems. Mathematical Surveys and Monographs 165. AMS, Providence (2010). DOI 10.1090/surv/165 | MR 2722295 | Zbl 1214.45002
[3] Carrier, G. F.: On the non-linear vibration problem of the elastic string. Q. Appl. Math. 3 (1945), 157-165. DOI 10.1090/qam/12351 | MR 0012351 | Zbl 0063.00715
[4] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A.: Existence and exponential decay for a Kirchhoff-Carrier model with viscosity. J. Math. Anal. Appl. 226 (1998), 40-60. DOI 10.1006/jmaa.1998.6057 | MR 1646453 | Zbl 0914.35081
[5] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Soriano, J. A.: Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6 (2001), 701-730. DOI 10.57262/ade/1357140586 | MR 1829093 | Zbl 1007.35049
[6] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Soriano, J. A., Filho, J. S. Prates: Existence and asymptotic behaviour for a degenerate Kirchhoff-Carrier model with viscosity and nonlinear boundary conditions. Rev. Mat. Complut. 14 (2001), 177-203. DOI 10.5209/rev_REMA.2001.v14.n1.17054 | MR 1851728 | Zbl 0983.35025
[7] Kafini, M., Messaoudi, S. A.: A blow-up result in a Cauchy viscoelastic problem. Appl. Math. Lett. 21 (2008), 549-553. DOI 10.1016/j.aml.2007.07.004 | MR 2412376 | Zbl 1149.35076
[8] Kafini, M., Mustafa, M. I.: Blow-up result in a Cauchy viscoelastic problem with strong damping and dispersive. Nonlinear Anal., Real World Appl. 20 (2014), 14-20. DOI 10.1016/j.nonrwa.2014.04.005 | MR 3233895 | Zbl 1295.35129
[9] Kirchhoff, G.: Vorlesungen über mathematische Physik. Erster Band. Mechanik. B. G. Teubner, Leipzig (1897), German \99999JFM99999 28.0603.01. MR 1546520
[10] Larkin, N. A.: Global regular solutions for the nonhomogeneous Carrier equation. Math. Probl. Eng. 8 (2002), 15-31. DOI 10.1080/10241230211382 | MR 1918087 | Zbl 1051.35042
[11] Li, Q., He, L.: General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping. Bound. Value Probl. 2018 (2018), Article ID 153, 22 pages. DOI 10.1186/s13661-018-1072-1 | MR 3859565 | Zbl 1499.35099
[12] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969), French. MR 0259693 | Zbl 0189.40603
[13] Long, N. T., Dinh, A. P. N., Diem, T. N.: Linear recursive schemes and asymptotic expansion associated with the Kirchhoff-Carrier operator. J. Math. Anal. Appl. 267 (2002), 116-134. DOI 10.1006/jmaa.2001.7755 | MR 1886820 | Zbl 1004.35095
[14] Medeiros, L. A.: On some nonlinear perturbation of Kirchhoff-Carrier operator. Comput. Appl. Math. 13 (1994), 225-233. MR 1326759 | Zbl 0821.35100
[15] Medeiros, L. A., Limaco, J., Menezes, S. B.: Vibrations of elastic strings: Mathematical aspects. I. J. Comput. Anal. Appl. 4 (2002), 91-127. DOI 10.1023/A:1012934900316 | MR 1875347 | Zbl 1118.35335
[16] Medeiros, L. A., Limaco, J., Menezes, S. B.: Vibrations of elastic strings: Mathematical aspects. II. J. Comput. Anal. Appl. 4 (2002), 211-263. DOI 10.1023/A:1013151525487 | MR 1878996 | Zbl 1118.35336
[17] Messaoudi, S. A.: Blow up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr. 260 (2003), 58-66. DOI 10.1002/mana.200310104 | MR 2017703 | Zbl 1035.35082
[18] Messaoudi, S. A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal., Theory Methods Appl., Ser. A 69 (2008), 2589-2598. DOI 10.1016/j.na.2007.08.035 | MR 2446355 | Zbl 1154.35066
[19] Mustafa, M. I.: General decay result for nonlinear viscoelastic equations. J. Math. Anal. Appl. 457 (2018), 134-152. DOI 10.1016/j.jmaa.2017.08.019 | MR 3702699 | Zbl 1379.35028
[20] Nhan, N. H., Ngoc, L. T. P., Long, N. T.: Existence and asymptotic expansion of the weak solution for a wave equation with nonlinear source containing nonlocal term. Bound. Value Probl. 2017 (2017), Article ID 87, 20 pages. DOI 10.1186/s13661-017-0818-5 | MR 3660353 | Zbl 1370.35212
[21] Park, J. Y., Bae, J. J.: On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term. Appl. Math. Comput. 129 (2002), 87-105. DOI 10.1016/S0096-3003(01)00031-5 | MR 1897321 | Zbl 1032.35139
[22] Park, J. Y., Park, S. H.: General decay for quasilinear viscoelastic equations with nonlinear weak damping. J. Math. Phys. 50 (2009), Article ID 083505, 10 pages. DOI 10.1063/1.3187780 | MR 2554433 | Zbl 1298.35221
[23] Santos, M. L., Ferreira, J., Pereira, D. C., Raposo, C. A.: Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary. Nonlinear Anal., Theory Methods Appl., Ser. A 54 (2003), 959-976. DOI 10.1016/S0362-546X(03)00121-4 | MR 1992515 | Zbl 1032.35140
[24] Showalter, R. E.: Hilbert Space Methods for Partial Differential Equations. Electronic Journal of Differential Equations. Monograph 1. Southwest Texas State University, San Marcos (1994). MR 1302484 | Zbl 0991.35001
[25] Tatar, N., Zaraï, A.: Exponential stability and blow up for a problem with Balakrishnan-Taylor damping. Demonstr. Math. 44 (2011), 67-90. DOI 10.1515/dema-2013-0297 | MR 2796763 | Zbl 1227.35074
[26] Wang, Y., Wang, Y.: Exponential energy decay of solutions of viscoelastic wave equations. J. Math. Anal. Appl. 347 (2008), 18-25. DOI 10.1016/j.jmaa.2008.05.098 | MR 2433821 | Zbl 1149.35323
[27] Wu, S.-T.: Exponential energy decay of solutions for an integro-differential equation with strong damping. J. Math. Anal. Appl. 364 (2010), 609-617. DOI 10.1016/j.jmaa.2009.11.046 | MR 2576211 | Zbl 1205.45012
Partner of
EuDML logo