[3] Brown, T. C., Hsu, L. C., Wang, J., Shiue, P. J.-S.:
On a certain kind of generalized number-theoretical Möbius function. Math. Sci. 25 (2000), 72-77.
MR 1807073 |
Zbl 0965.11002
[7] Haukkanen, P.:
A note on specially multiplicative arithmetic functions. Fibonacci Q. 26 (1988), 325-327.
MR 0967651 |
Zbl 0662.10003
[8] Horadam, A. F.:
Basic properties of a certain generalized sequence of numbers. Fibonacci Q. 3 (1965), 161-176.
MR 0186615 |
Zbl 0131.04103
[10] Hsu, L. C.:
A difference-operational approach to the Möbius inversion formulas. Fibonacci Q. 33 (1995), 169-173.
MR 1329025 |
Zbl 0822.11005
[14] McCarthy, P. J., Sivaramakrishnan, R.:
Generalized Fibonacci sequences via arithmetical functions. Fibonacci Q. 28 (1990), 363-370.
MR 1077503 |
Zbl 0721.11008
[15] Sastry, K. P. R.:
On the generalized type Möbius functions. Math. Stud. 31 (1963), 85-88.
MR 0166140 |
Zbl 0119.28001
[16] Schwab, E. D., Schwab, G.:
$k$-Fibonacci numbers and Möbius functions. Integers 22 (2022), Article ID A64, 11 pages.
MR 4451564 |
Zbl 07569238