Previous |  Up |  Next

Article

Title: $C^*$-basic construction between non-balanced quantum doubles (English)
Author: Xin, Qiaoling
Author: Cao, Tianqing
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 611-621
Summary lang: English
.
Category: math
.
Summary: For finite groups $X$, $G$ and the right $G$-action on $X$ by group automorphisms, the non-balanced quantum double $D(X;G)$ is defined as the crossed product $(\Bbb {C}X^{\rm op})^*\rtimes \Bbb {C}G$. We firstly prove that $D(X;G)$ is a finite-dimensional Hopf $C^*$-algebra. For any subgroup $H$ of $G$, $D(X;H)$ can be defined as a Hopf $C^*$-subalgebra of $D(X;G)$ in the natural way. Then there is a conditonal expectation from $D(X;G)$ onto $D(X;H)$ and the index is $[G;H]$. Moreover, we prove that an associated natural inclusion of non-balanced quantum doubles is the crossed product by the group algebra. (English)
Keyword: non-balanced quantum double
Keyword: $C^*$-basic construction
Keyword: crossed product
Keyword: action
MSC: 16S35
MSC: 46L05
idZBL: Zbl 07893402
idMR: MR4764543
DOI: 10.21136/CMJ.2024.0022-24
.
Date available: 2024-07-10T14:58:40Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152461
.
Reference: [1] Bratteli, O., Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics. Vol. 1. C*- and W*-Algebras. Symmetry Groups. Decomposition of States.Texts and Monographs in Physics. Springer, New York (1987). Zbl 0905.46046, MR 0887100, 10.1007/978-3-662-02520-8
Reference: [2] Cao, T., Xin, Q., Wei, X., Jiang, L.: Jones type basic construction on Hopf spin models.Mathematics 8 (2020), Article ID 1547, 9 pages. 10.3390/math8091547
Reference: [3] Chen, L., Li, F.: On the structure and representations of non-balanced quantum doubles.Appl. Math., Ser. B (Engl. Ed.) 27 (2012), 475-488. Zbl 1289.16049, MR 3001093, 10.1007/s11766-012-2852-5
Reference: [4] De, S., Kodiyalam, V.: Note on infinite iterated crossed products of Hopf algebras and the Drinfeld double.J. Pure Appl. Algerba 219 (2015), 5305-5313. Zbl 1325.16028, MR 3390022, 10.1016/j.jpaa.2015.05.013
Reference: [5] Drinfel'd, V. G.: Quantum groups.Proceedings of the International Congress of Mathematicians, Vol. 1, 2 AMS, Providence (1987), 798-820. Zbl 0667.16003, MR 0934283
Reference: [6] Hiai, F.: Minimizing indices of conditional expectations onto a subfactor.Publ. Res. Inst. Math. Sci. 24 (1988), 673-678. Zbl 0679.46050, MR 0976765, 10.2977/PRIMS/1195174872
Reference: [7] Jiang, L.: $C^*$-index of observable algebras in $G$-spin model.Sci. China, Ser. A 48 (2005), 57-66. Zbl 1177.82024, MR 2156615, 10.1360/03ys0119
Reference: [8] Jiang, L., Zhu, G.: $C^*$-index in double algebra of finite group.Trans. Beijing Inst. Technol. 23 (2003), 147-148 Chinese. Zbl 1084.46044, MR 1976172
Reference: [9] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155. Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2
Reference: [10] Kawahigashi, Y., Longo, R.: Classification of local conformal nets. Case $c<1$.Ann. Math. (2) 160 (2004), 493-522. Zbl 1083.46038, MR 2123931, 10.4007/annals.2004.160.493
Reference: [11] Kosaki, H.: Extension of Jones' theory on index to arbitrary factors.J. Funct. Anal. 66 (1986), 123-140. Zbl 0607.46034, MR 0829381, 10.1016/0022-1236(86)90085-6
Reference: [12] Loi, P. H.: Sur la théorie de l'indice et les facteurs de type III.C. R. Acad. Sci., Paris, Sér. 305 (1987), 423-426 French. Zbl 0622.46042, MR 0916344
Reference: [13] Longo, R.: Index of subfactors and statistics of quantum fields. II. Correspondences, braid group statistics and Jones polynomial.Commun. Math. Phys. 130 (1990), 285-309. Zbl 0705.46038, MR 1059320, 10.1007/BF02473354
Reference: [14] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Regional Conference Series in Mathematics 82. AMS, Providence (1993). Zbl 0793.16029, MR 1243637, 10.1090/cbms/082
Reference: [15] Murphy, G. J.: $C^*$-Algebras and Operator Theory.Academic Press, Boston (1990). Zbl 0714.46041, MR 1074574, 10.1016/c2009-0-22289-6
Reference: [16] Pimsner, M., Popa, S.: Entropy and index for subfactors.Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 57-106. Zbl 0646.46057, MR 0860811, 10.24033/asens.1504
Reference: [17] Radford, D. E.: Minimal quasitriangular Hopf algebras.J. Algebra 157 (1993), 285-315. Zbl 0787.16028, MR 1220770, 10.1006/jabr.1993.1102
Reference: [18] Sweedler, M. E.: Hopf Algebras.W. A. Benjamin, New York (1969). Zbl 0194.32901, MR 0252485
Reference: [19] Vaes, S., Daele, A. Van: Hopf $C^*$-algebras.Proc. Lond. Math. Soc., III. Ser. 82 (2001), 337-384. Zbl 1028.46100, MR 1806875, 10.1112/S002461150101276X
Reference: [20] Watatani, Y.: Index for $C^*$-subalgebras.Mem. Am. Math. Soc. 424 (1990), 117 pages. Zbl 0697.46024, MR 0996807, 10.1090/memo/0424
Reference: [21] Xin, Q., Jiang, L.: Symmetric structure of field algebra of $G$-spin models determined by a normal subgroup.J. Math. Phys. 55 (2014), Article ID 091703, 9 pages. Zbl 1442.81056, MR 3390774, 10.1063/1.4896327
Reference: [22] Xin, Q., Jiang, L., Cao, T.: $C^*$-basic construction from the conditional expectation on the Drinfeld double.J. Funct. Spaces 2019 (2019), Article ID 2041079, 7 pages. Zbl 1436.46051, MR 3976604, 10.1155/2019/2041079
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo