Previous |  Up |  Next

Article

Title: Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space (English)
Author: Gil', Michael
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 567-573
Summary lang: English
.
Category: math
.
Summary: Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal {H}$, and $S$ be a selfadjoint operator in $\mathcal {H}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal {S}_p$ $(p> 1),$ we derive a bound for $\sum _{k}| {\rm R} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$ $(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the ``extended'' eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component. (English)
Keyword: Hilbert space
Keyword: linear operator
Keyword: eigenvalue
Keyword: Kato theorem
Keyword: Weyl inequality
MSC: 47A10
MSC: 47A55
MSC: 47B10
idZBL: Zbl 07893399
idMR: MR4764540
DOI: 10.21136/CMJ.2024.0468-23
.
Date available: 2024-07-10T14:56:55Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152458
.
Reference: [1] Abdelmoumen, B., Jeribi, A., Mnif, M.: Invariance of the Schechter essential spectrum under polynomially compact operator perturbation.Extr. Math. 26 (2011), 61-73. Zbl 1283.47007, MR 2908391
Reference: [2] Aiena, P., Triolo, S.: Some perturbation results through localized SVEP.Acta Sci. Math. 82 (2016), 205-219. Zbl 1374.47006, MR 3526346, 10.14232/actasm-014-785-1
Reference: [3] Bhatia, R., Davis, C.: Perturbation of extended enumerations of eigenvalues.Acta Sci. Math. 65 (1999), 277-286. Zbl 0933.47015, MR 1702207
Reference: [4] Bhatia, R., Elsner, L.: The Hoffman-Wielandt inequality in infinite dimensions.Proc. Indian Acad. Sci., Math. Sci. 104 (1994), 483-494. Zbl 0805.47017, MR 1314392, 10.1007/BF02867116
Reference: [5] Chaker, W., Jeribi, A., Krichen, B.: Demicompact linear operators, essential spectrum and some perturbation results.Math. Nachr. 288 (2015), 1476-1486. Zbl 1343.47015, MR 3395822, 10.1002/mana.201200007
Reference: [6] Gil', M. I.: Lower bounds for eigenvalues of Schatten-von Neumann operators.JIPAM, J. Inequal. Pure Appl. Math. 8 (2007), Article ID 66, 7 pages. Zbl 1133.47016, MR 2345921
Reference: [7] Gil', M. I.: Sums of real parts of eigenvalues of perturbed matrices.J. Math. Inequal. 4 (2010), 517-522. Zbl 1213.15016, MR 2777268, 10.7153/jmi-04-46
Reference: [8] Gil', M. I.: Bounds for eigenvalues of Schatten-von Neumann operators via self-commutators.J. Funct. Anal. 267 (2014), 3500-3506. Zbl 1359.47016, MR 3261118, 10.1016/j.jfa.2014.06.019
Reference: [9] Gil', M. I.: A bound for imaginary parts of eigenvalues of Hilbert-Schmidt operators.Funct. Anal. Approx. Comput. 7 (2015), 35-38. Zbl 1355.47011, MR 3313254
Reference: [10] Gil', M. I.: Inequalities for eigenvalues of compact operators in a Hilbert space.Commun. Contemp. Math. 18 (2016), Article ID 1550022, 5 pages. Zbl 1336.47022, MR 3454622, 10.1142/S0219199715500224
Reference: [11] Gil', M. I.: Operator Functions and Operator Equations.World Scientific, Hackensack (2018). Zbl 1422.47004, MR 3751395, 10.1142/10482
Reference: [12] Gil', M. I.: Norm estimates for resolvents of linear operators in a Banach space and spectral variations.Adv. Oper. Theory 4 (2019), 113-139. Zbl 06946446, MR 3867337, 10.15352/aot.1801-1293
Reference: [13] Gil', M. I.: On matching distance between eigenvalues of unbounded operators.Constr. Math. Anal. 5 (2022), 46-53. Zbl 1497.47009, MR 4410203, 10.33205/cma.1060718
Reference: [14] Gohberg, I. C., Krein, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators.Translations of Mathematical Monographs 18. AMS, Providence (1969). Zbl 0181.13503, MR 0246142, 10.1090/mmono/018
Reference: [15] Gohberg, I. C., Krein, M. G.: Theory and Applications of Volterra Operators in a Hilbert Space.Translations of Mathematical Monographs 24. AMS, Providence (1970). Zbl 0194.43804, MR 0264447, 10.1090/mmono/024
Reference: [16] Jeribi, A.: Perturbation Theory for Linear Operators: Denseness and Bases with Applications.Springer, Singapore (2021). Zbl 1483.47001, MR 4306622, 10.1007/978-981-16-2528-2
Reference: [17] Kahan, W.: Spectra of nearly Hermitian matrices.Proc. Am. Math. Soc. 48 (1975), 11-17. Zbl 0322.15022, MR 0369394, 10.1090/S0002-9939-1975-0369394-5
Reference: [18] Kato, T.: Perturbation Theory for Linear Operators.Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1980). Zbl 0435.47001, MR 0407617, 10.1007/978-3-642-66282-9
Reference: [19] Kato, T.: Variation of discrete spectra.Commun. Math. Phys. 111 (1987), 501-504. Zbl 0632.47002, MR 0900507, 10.1007/BF01238911
Reference: [20] Killip, R.: Perturbations of one-dimensional Schrödinger operators preserving the absolutely continuous spectrum.Int. Math. Res. Not. 2002 (2002), 2029-2061. Zbl 1021.34071, MR 1925875, 10.1155/S1073792802204250
Reference: [21] Ma, R., Wang, H., Elsanosi, M.: Spectrum of a linear fourth-order differential operator and its applications.Math. Nachr. 286 (2013), 1805-1819. Zbl 1298.34041, MR 3145173, 10.1002/mana.201200288
Reference: [22] Rojo, O.: Inequalities involving the mean and the standard deviation of nonnegative real numbers.J. Inequal. Appl. 2006 (2006), Article ID 43465, 15 pages. Zbl 1133.26321, MR 2270311, 10.1155/JIA/2006/43465
Reference: [23] Sahari, M. L., Taha, A. K., Randriamihamison, L.: A note on the spectrum of diagonal perturbation of weighted shift operator.Matematiche 74 (2019), 35-47. Zbl 1714.2751, MR 3964778, 10.4418/2019.74.1.3
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo