Title: | On the least almost-prime in arithmetic progressions (English) |
Author: | Wu, Liuying |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 2 |
Year: | 2024 |
Pages: | 535-548 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $\mathcal P_{2}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal P_{2}(q,a)$ denote the least $\mathcal P_{2}$ in the arithmetic progression $\{nq+a\}_{n=1}^{\infty }$. It is proved that for sufficiently large $q$, we have $$ \mathcal P_{2}(q,a)\ll q^{1.825}. $$ This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal P_{2}(q,a)\ll q^{1.8345}.$ (English) |
Keyword: | almost-prime |
Keyword: | arithmetic progression |
Keyword: | linear sieve |
Keyword: | Selberg's $\Lambda ^2$-sieve |
MSC: | 11N13 |
MSC: | 11N35 |
MSC: | 11N36 |
DOI: | 10.21136/CMJ.2024.0459-23 |
. | |
Date available: | 2024-07-10T14:55:42Z |
Last updated: | 2024-07-15 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152456 |
. | |
Reference: | [1] Halberstam, H., Richert, H.-E.: Sieve Methods.London Mathematical Society Monographs 4. Academic Press, London (1974). Zbl 0298.10026, MR 0424730 |
Reference: | [2] Heath-Brown, D. R.: Almost-primes in arithmetic progressions and short intervals.Math. Proc. Camb. Philos. Soc. 83 (1978), 357-375. Zbl 0375.10027, MR 0491558, 10.1017/S0305004100054657 |
Reference: | [3] Heath-Brown, D. R.: Zero-free regions for Dirichlet $L$-functions and the least prime in an arithmetic progression.Proc. Lond. Math. Soc., III. Ser. 64 (1992), 265-338. Zbl 0739.11033, MR 1143227, 10.1112/plms/s3-64.2.265 |
Reference: | [4] Hooley, C.: On the Brun-Titchmarsh theorem.J. Reine Angew. Math. 255 (1972), 60-79. Zbl 0252.10045, MR 0304328, 10.1515/crll.1972.255.60 |
Reference: | [5] Iwaniec, H.: A new form of the error term in the linear sieve.Acta Arith. 37 (1980), 307-320. Zbl 0444.10038, MR 0598883, 10.4064/aa-37-1-307-320 |
Reference: | [6] Iwaniec, H.: On the Brun-Titchmarsh theorem.J. Math. Soc. Japan 34 (1982), 95-123. Zbl 0486.10033, MR 0639808, 10.2969/jmsj/03410095 |
Reference: | [7] Iwaniec, H., Laborde, M.: $P_2$ in short intervals.Ann. Inst. Fourier 31 (1981), 37-56. Zbl 0472.10048, MR 0644342, 10.5802/aif.848 |
Reference: | [8] Jurkat, W. B., Richert, H.-E.: An improvement of Selberg's sieve method. I.Acta Arith. 11 (1965), 217-240. Zbl 0128.26902, MR 0202680, 10.4064/aa-11-2-217-240 |
Reference: | [9] Laborde, M.: Buchstab's sifting weights.Mathematika 26 (1979), 250-257. Zbl 0429.10028, MR 0575644, 10.1112/S0025579300009803 |
Reference: | [10] Levin, B. V.: On the least almost prime number in an arithmetic progression and the sequence $k^2x^2+1$.Usp. Mat. Nauk 20 (1965), 158-162 Russian. Zbl 0154.30002, MR 0188173 |
Reference: | [11] Li, J., Zhang, M., Cai, Y.: On the least almost-prime in arithmetic progression.Czech. Math. J. 73 (2023), 177-188. Zbl 07655761, MR 4541095, 10.21136/CMJ.2022.0478-21 |
Reference: | [12] Linnik, Y. V.: On the least prime number in an arithmetic progression. I. The basic theorem.Mat. Sb., Nov. Ser. 15 (1944), 139-178 Russian. Zbl 0063.03584, MR 0012111 |
Reference: | [13] Linnik, Y. V.: On the least prime number in an arithmetic progression. II. The Deuring-Heilbronn phenomenon.Mat. Sb., Nov. Ser. 15 (1944), 347-368 Russian. Zbl 0063.03585, MR 0012112 |
Reference: | [14] Mertens, F.: A contribution to analytic number theory: On the distribution of primes.J. Reine Angew. Math. 78 (1874), 46-62 German \99999JFM99999 06.0116.01. MR 1579612, 10.1515/crll.1874.78.46 |
Reference: | [15] Motohashi, Y.: On almost-primes in arithmetic progressions. III.Proc. Japan Acad. 52 (1976), 116-118. Zbl 0361.10039, MR 0412128, 10.3792/pja/1195518371 |
Reference: | [16] Pan, C. D., Pan, C. B.: Goldbach Conjecture.Science Press, Beijing (1992). Zbl 0849.11080, MR 1287852 |
Reference: | [17] Xylouris, T.: On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet $L$-functions.Acta Arith. 150 (2011), 65-91. Zbl 1248.11067, MR 2825574, 10.4064/aa150-1-4 |
. |
Fulltext not available (moving wall 24 months)