Previous |  Up |  Next

Article

Keywords:
fault diagnosis; fault-tolerant control; output measurement noise; non-fragile; output filter
Summary:
In this article, the problems of fault diagnosis (FD) and fault-tolerant control (FTC) are investigated for a class of nonlinear systems with output measurement noise. Due to the influence of measurement noise in the output sensor, the output observation error cannot be accurately obtained, which causes obstacles to the accuracy of FD. To address this issue, an output filter and disturbance estimator are constructed to decrease the negative effects of measurement noise and observer gain disturbances, and a novel non-fragile neural observer is designed to estimate the unknown states. A new evaluation function is also introduced to detect faults. Then, a novel neural FTC controller is proposed in the presence of faults, to ensure that all the closed-loop system signals are semiglobally uniformly ultimately bounded (SGUUB). The effectiveness of the proposed methodology is verified via numerical simulation of a one-link robot system.
References:
[1] Astolfi, D., Zaccarian, L., Jungers, M.: On the use of low-pass filters in high-gain observers. Systems Control Lett. 148, (2021). DOI  | MR 4201528
[2] Chadli, M., Abdo, A., Ding, S. X.: H-/$ {H}_\infty $ fault detection filter design for discrete-time Takagi-Sugeno fuzzy system. Automatica 49 (2013), 1996-2005. DOI  | MR 3063055
[3] Chang, X., Yang, G.: Nonfragile $ {H}_\infty $ filtering of continuous-time fuzzy systems. IEEE Trans. Signal Process. 59 (2010), 1528-1538. DOI  | MR 2807742
[4] Chen, Jianliang, Zhang, Weidong, Cao, Yongyan, Chu, Hongjun: Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47 (2016), 1336-1347. DOI 
[5] Cui, D., Niu, B., Wang, H., Yang, D.: Adaptive fuzzy output-feedback fault-tolerant tracking control of a class of uncertain nonlinear switched systems. Taylor and Francis 50 (2019), 2673-2686. DOI  | MR 4028330
[6] Cui, D., Ahn, Ch. K., Xiang, Z.: Fault-tolerant fuzzy observer-based fixed-time tracking control for nonlinear switched systems. IEEE Trans. Fuzzy Systems (2023). DOI 
[7] Cui, D., Chadli, M., Xiang, Z.: Fuzzy fault-tolerant predefined-time control for switched systems: a singularity-free method. IEEE Trans. Fuzzy Systems (2023). DOI 
[8] Gong, J., Jiang, B., Shen, Q. S.: Distributed adaptive output-feedback fault tolerant control for nonlinear systems with sensor faults. IEEE Trans. Industr. Inform. 38 (2020), 4173-4190. DOI 
[9] Guo, H., Xu, J., Chen, Y.: Robust control of fault-tolerant permanent-magnet synchronous motor for aerospace application with guaranteed fault switch process. IEEE Transa. Industr. Electronics 62 (2015), 7309-7321. DOI 
[10] He, X., Wang, Z., Qin, L., Zhou, D.: Active fault-tolerant control for an internet-based networked three-tank system. IEEE Trans. Control Systems Technol. 24 (2016), 2150-2157. DOI  | MR 3526061
[11] Jia, F., He, X.: Adaptive fault-tolerant tracking control for discrete-time nonstrict-feedback nonlinear systems with stochastic noises. IEEE Trans. Automat. Sci. Engrg. (2023), 1-13. DOI 
[12] Keliris, Ch., Polycarpou, M. M., Parisini, T.: An integrated learning and filtering approach for fault diagnosis of a class of nonlinear dynamical systems. IEEE Trans. Neural Networks Learning Systems 28 (2016), 988-1004. DOI 
[13] Kumar, S. V., Raja, R., Anthoni, S. M., Cao, J., Tu, Z.: Robust finite-time non-fragile sampled-data control for TS fuzzy flexible spacecraft model with stochastic actuator faults. Applied Math. Comput. 321 (2018), 483-497. DOI  | MR 3732392
[14] M.-S, Koo, Choi, H.-L.: State feedback regulation of high-order feedforward nonlinear systems with delays in the state and input under measurement sensitivity. Int. J. Systems Sci. 52 (2021), 2034-2047. DOI  | MR 4286478
[15] Li, Y., Zhang, J., Tong, S.: Fuzzy adaptive optimized leader-following formation control for second-order stochastic multiagent systems. IEEE Trans. Industr. Inform. 18 (2021), 6026-6037. DOI 
[16] Li, X. X., Zhu, F., Zak, Chakrabarty A.: Nonfragile fault-tolerant fuzzy observer-based controller design for nonlinear systems. IEEE Trans. Fuzzy Systems 24 (2016), 1679-1689. DOI 
[17] Liu, Z., Chen, C., Zhang, Y., Chen, C. L. P.: Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism. IEEE Trans. Cybernet. 45 (2014), 507-518. DOI 
[18] Liu, G., Park, J. H., Xu, S., Zhuang, G.: Robust non-fragile $ {H}_\infty $ fault detection filter design for delayed singular Markovian jump systems with linear fractional parametric uncertainties. Nonlinear Analysis: Hybrid Systems 32 (2019), 65-78. DOI  | MR 3880200
[19] Liu, L., Wang, Z., Zhang, H.: Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Trans. Automat. Sci. Engrg. 514 (2016), 299-313. DOI 
[20] Liu, L., Wang, Z., Zhang, H.: Adaptive {NN} fault-tolerant control for discrete-time systems in triangular forms with actuator fault. Neurocomputing 152 (2015), 209-221. DOI 
[21] Long, L., Zhao, J.: Adaptive output-feedback neural control of switched uncertain nonlinear systems with average dwell time. IEEE Trans. Neural Networks Learning Systems 26 (2014), 1350-1362. DOI  | MR 3479905
[22] Lu, J., Luo, F., Wang, Y., Hou, M., Guo, H.: Observer-based fault tolerant control for a class of nonlinear systems via filter and neural network. IEEE Access 9 (2021), 91148-91159. DOI 
[23] Ma, H. J., Yang, G.: Detection and adaptive accommodation for actuator faults of a class of non-linear systems. J. Intell. Fuzzy Systems 6 (2020), 2292-2307. DOI  | MR 3052346
[24] Paoli, A., Sartini, M., Lafortune, S.: Active fault tolerant control of discrete event systems using online diagnostics. Automatica 47 (2011), 639-649. DOI  | MR 2878325
[25] Sakthivel, R., Kanagaraj, R., Wang, C., Selvara: Adaptive non-fragile observer design for the uncertain Lur'e differential inclusion system. Applied Mathematical Modelling 37 (2013), 72-81. DOI 
[26] Sakthivel, R., Kanagaraj, R., Wang, C., Selvara: Non-fragile sampled-data guaranteed cost control for bio-economic fuzzy singular Markovian jump systems. IET Control Theory Appl. 13 (2019), 279-287. DOI  | MR 3932506
[27] Sakthivel, R., Mohana, P. R., Wang, Ch., Dhanalakshmi, P.: Observer-based finite-time nonfragile control for nonlinear systems with actuator saturation. J. Comput. Nonlinear Dynamics 14 (2019). DOI 
[28] Schuh, M., Zgorzelski, M., Lunze, J.: Experimental evaluation of an active fault-tolerant control method. Control Engrg. Practice 43 (2015), 1-11. DOI 
[29] Shen, Q., Jiang, B., Shi, P., Lim, Ch.: Novel neural networks-based fault tolerant control scheme with fault alarm. IEEE Trans. Cybernet. 44 (2014), 2190-2201. DOI 
[30] Shen, Y., Wang, D., Fang, Z.: Leader-following consensus for lower-triangular nonlinear multi-agent systems with unknown controller and measurement sensitivities. Kybernetika 58 (2022), 522-546. DOI  | MR 4521854
[31] Tang, L., Ma, D., Zhao, J.: Neural networks-based active fault-tolerant control for a class of switched nonlinear systems with its application to RCL circuit. IEEE Trans. Systems, Man, Cybernet.: Systems 50 (2018), 4270-4282. DOI  | MR 4182412
[32] Wang, X., Niu, B., Zhao, P., Song, X.: Neural networks-based adaptive finite-time prescribed performance fault-tolerant control of switched nonlinear systems. Int. J. Adaptive Control Signal Process. 35 (2021), 532-548. DOI  | MR 4246634
[33] Wang, Y., Song, Y., Lewis, F. L.: Robust adaptive fault-tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures. IEEE Trans. Industr. Electronics 62 (2015), 3978-3988. DOI 
[34] Xiang, Z., Wang, R., Jiang, B.: Nonfragile observer for discrete-time switched nonlinear systems with time delay. Circuits Systems Signal Process. 30 (2011), 73-87. DOI  | MR 2769375
[35] Zebin, W., Yanjun, S., Fan, Z., Chenhao, Z.: Robust fuzzy adaptive stabilization for uncertain nonlinear systems with quantized input and output constraints. J. Franklin Inst. (2024), 0016-0032. DOI  | MR 4711080
[36] Zeng, W., Wang, Q., Liu, F., Wang, Y.: Learning from adaptive neural network output feedback control of a unicycle-type mobile robot. ISA Trans. 61 (2016), 337-347. DOI 
[37] Zhao, Ch., Li, L., Shen, Y.: Global event-triggered output-feedback stabilization for switched nonlinear systems with time-delay and measurement sensitivity. J. Franklin Inst. 360 (2023), 13080-13107. DOI  | MR 4658487
[38] Zhao, D., Polycarpou, M. M.: Fault accommodation for a class of nonlinear uncertain systems with event-triggered input. IEEE/CAA J. Automatica Sinica 9 (2021), 235-245. DOI  | MR 4339340
[39] Zhao, X., Yang, H., R, H., Karimi, Zhu, Y.: Adaptive neural control of MIMO nonstrict-feedback nonlinear systems with time delay. IEEE Trans. Cybernet. 46 (2015), 1337-1349. DOI 
[40] Zheng, Qunxian, Xu, Shengyuan, Zhang, Zhengqiang: Nonfragile $ {H}_\infty $ observer design for uncertain nonlinear switched systems with quantization. Applied Mathematics and Computation 386 (2019). DOI  | MR 4114862
Partner of
EuDML logo