Previous |  Up |  Next

Article

Title: Distributed optimization via active disturbance rejection control: A nabla fractional design (English)
Author: Zeng, Yikun
Author: Wei, Yiheng
Author: Zhou, Shuaiyu
Author: Yue, Dongdong
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 60
Issue: 1
Year: 2024
Pages: 90-109
Summary lang: English
.
Category: math
.
Summary: This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal solution when the external disturbance is bounded. In particular, for constant disturbances, the Frac-ESO is Mittag-Leffler convergent and the optimization problem can be solved exactly. Finally, numerical simulations are presented to validate the effective properties of the proposed algorithm. (English)
Keyword: distributed optimization
Keyword: nabla fractional difference
Keyword: active disturbance rejection control
Keyword: Lyapunov method
MSC: 26A33
MSC: 49N15
MSC: 68W15
MSC: 93D05
MSC: 93D21
DOI: 10.14736/kyb-2024-1-0090
.
Date available: 2024-04-12T10:18:39Z
Last updated: 2024-04-12
Stable URL: http://hdl.handle.net/10338.dmlcz/152348
.
Reference: [1] Chen, Y. Q., Gao, Q., Wei, Y. H., Wang, Y.: Study on fractional order gradient methods..Appl. Math. Comput. 314 (2017), 310-321. MR 3683875,
Reference: [2] Chen, Z. Q., Liang, S.: Distributed aggregative optimization with quantized communication..Kybernetika 58 (2022), 1, 123-144. MR 4405950,
Reference: [3] Cheng, S. S., Liang, S.: Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate..Kybernetika 56 (2020), 3, 559-577. MR 4131743,
Reference: [4] Cheng, S. S., Liang, S., Fan, nd Y.: Distributed solving Sylvester equations with fractional order dynamics..Control Theory and Technology 19 (2021), 2, 249-259. MR 4264963,
Reference: [5] Ding, C., Wei, R., Liu, F.: Prescribed-time distributed optimization for time-varying objective functions: a perspective from time-domain transformation..J. Franklin Inst. 359 (2021), 17, 10,267-10,280. MR 4507594,
Reference: [6] Duan, S. Q., Chen, S., Zhao, Z. L.: Active disturbance rejection distributed optimization algorithm for first order multi-agent disturbance systems..Control and Decision 37 (2022), 3, 1559-1566.
Reference: [7] Gharesifard, B., Cortés, J.: Distributed continuous-time convex optimization on weight-balanced digraphs..IEEE Trans. Automat. Control 59 (2014), 3, 781-786. MR 3188487,
Reference: [8] Goodrich, C., Peterson, A. C.: Discrete Fractional Calculus..Springer, Cham 2015. MR 3445243
Reference: [9] Guo, G., Zhang, R. Y. K., Zhou, I. D.: A local-minimization-free zero-gradient-sum algorithm for distributed optimization..Automatica 157 (2023), 111,247. MR 4631357,
Reference: [10] Han, J. Q.: From PID to active disturbance rejection control..IEEE Trans. Industr. Electron. 56 (2009), 3, 900-906.
Reference: [11] Hong, X. L., Wei, Y. H., Zhou, S. Y., Yue, D. D.: Nabla fractional distributed optimization algorithms over undirected/directed graphs..J. Franklin Inst. 361 (2024), 3, 1436-1454. MR 4689320,
Reference: [12] Hong, X. L., Wei, Y. H., S., Zhou, Y., Yue, D. D., Cao, J. D.: Nabla fractional distributed optimization algorithm over unbalanced graphs..IEEE Control Systems Lett. 8 (2024), 241-246.
Reference: [13] Kia, S. S., Cortés, J., J., Martínez, S.: Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication..Automatica 55 (2015), 254-264. MR 3336675,
Reference: [14] Liu, C. Y., Dou, X. H., Fan, Y., Cheng, S. S.: A penalty ADMM with quantized communication for distributed optimization over multi-agent systems..Kybernetika 59 (2023), 3, 392-417. MR 4613716,
Reference: [15] Pu, Y. F., Zhou, J. L., Zhang, Y., Zhang, N., Huang, G., Siarry, P.: Fractional extreme value adaptive training method: fractional steepest descent approach..IEEE Trans. Neural Networks Learning Systems 26 (2015), 4, 653-662. MR 3452478,
Reference: [16] Song, C. X., Qin, S. T., Zeng, Z. G.: Multiple Mittag-Leffler stability of almost periodic solutions for fractional-order delayed neural networks: Distributed optimization approach..IEEE Trans. Neural Networks Learning Systems (2023).
Reference: [17] Wang, J., Elia, N.: Control approach to distributed optimization..In: The 48th Annual Allerton Conference on Communication, Control, and Computing, Monticello 2010, pp. 557-561.
Reference: [18] Wang, K., Gong, P., Ma, Z. Y.: Fixed-time distributed time-varying optimization for nonlinear fractional-order multiagent systems with unbalanced digraphs..Fractal and Fractional 7 (2023), 11, 813. MR 4698993,
Reference: [19] Wang, Y., Song, Y.: Leader-following control of high-order multi-agent systems under directed graphs: pre-specified finite time approach..Automatica 87 (2018), 113-120. MR 3733906,
Reference: [20] Wang, Y. J., Song, Y. D., J., D., Hill, Krstic, M.: Prescribed-time consensus and containment control of networked multiagent systems..IEEE Trans. Cybernet. 49 (2019), 4, 1138-1147.
Reference: [21] Wei, Y. H.: Lyapunov stability theory for nonlinear nabla fractional order systems..IEEE Trans. Circuits Systems II: Express Briefs 68 (2021), 10, 3246-3250.
Reference: [22] Wei, Y. H.: Nabla Fractional Order Systems Theory: Analysis and Control..Science Press, Beijing 2023.
Reference: [23] Wei, Y. H., Chen, Y. Q., Liu, T. Y., Wang, Y.: Lyapunov functions for nabla discrete fractional order systems..ISA Trans. 88 (2019), 82-90.
Reference: [24] Wei, Y. H., Chen, Y. Q., Zhao, X., Cao, J. D.: Analysis and synthesis of gradient algorithms based on fractional-order system theory..IEEE Trans. Systems Man Cybernet.: Systems 53 (2023), 3, 1895-1906. MR 0660680,
Reference: [25] Wei, Y. H., Kang, Y., Yin, W. D., Wang, Y.: Generalization of the gradient method with fractional order gradient direction..J. Franklin Inst. 357 (2020), 4, 2514-2532. MR 4077858,
Reference: [26] Xu, Y., Han, T., Cai, K., Lin, Z., G, Yan, Fu, M.: A distributed algorithm for resource allocation over dynamic digraphs..IEEE Trans. Signal Process.65 (2017), 10, 2600-2612. MR 3646746,
Reference: [27] Yang, X. J., Zhao, W. M., Yuan, J. X., Chen, T., Zhang, C., Wang, L. Q.: Distributed optimization for fractional-order multi-agent systems based on adaptive backstepping dynamic surface control technology..Fractal and Fractional 6 (2022), 11, 642.
Reference: [28] Yang, X. L., Yuan, J. X., Chen, T., Yang, H.: Distributed adaptive optimization algorithm for fractional high-order multiagent systems based on event-triggered strategy and input quantization..Fractal and Fractional 7 (2023), 10, 749.
Reference: [29] Zhu, Y. N.: Research on Solving Network Distributed Optimization Problem Using Continuous-time Algorithms..Ph D. Thesis, Southeast University, Nanjing 2019.
.

Files

Files Size Format View
Kybernetika_60-2024-1_6.pdf 1.336Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo