[1] Azuma, S. I., Yoshida, T., Sugie, T.:
Structural oscillatority analysis of Boolean networks. IEEE T. Control Netw. 6 (2018), 464-473.
DOI |
MR 3958930
[2] Chen, S. Q., Wu, Y. H., Macauley, M., Sun, X. M.:
Monostability and bistability of Boolean networks using semi-tensor products. IEEE T. Contr. Syst. Theory 6 (2018), 1379-1390.
DOI |
MR 4052461
[3] Cheng, D.:
Disturbance decoupling of Boolean control networks. IEEE Trans. Automat. Control 56 (2011), 2-10.
DOI |
MR 2777196
[4] Cheng, D. Z., Li, C., He, F.:
Observability of Boolean networks via set controllability approach. Syst. Control Lett. 115 (2018), 22-25.
DOI |
MR 3786117
[5] Cheng, D., Qi, H., Liu, T., Wang, Y.:
A note on observability of Boolean control networks. Syst. Control Lett. 87 (2016), 76-82.
DOI |
MR 3433244
[6] Cheng, D. Z., Qi, H. S., Zhao, Y.:
An Introduction to Semi-Tensor Product of Matrices and Its Applications. World Scientific Publishing Co. Pte. Ltd., Singapore 2012.
MR 2963878
[7] Cheng, D. Z., Wu, Y. H., Zhao, G., Fu, S.:
A comprehensive survey on STP approach to finite games. J. Syst. Sci. Complex. 34 (2021), 1666-1680.
DOI |
MR 4331641
[8] Cui, Y. X., Li, S., Liu, F. Q., Wu, Y. H.:
Set reachability and observability of Boolean multiplex control networks[J/OL]. J. Liaocheng University (Natural Science Edition) (2023), 1-11.
DOI |
MR 3379151
[9] Cui, Y. X., Li, S., Shan, Y. X., Liu, F. Q.:
Finite-time set reachability of probabilistic Boolean multiplex control networks. Appl. Sci. Basel 12 (2022), 883.
DOI
[10] Fu, S., Pan, Y., Feng, J. E., Zhao, J.:
Strategy optimisation for coupled evolutionary public good games with threshold. Int. J. Control 95, (2022), 562-571.
DOI |
MR 4372084
[11] Guo, Y. Q.:
Observability of Boolean control networks using parallel extension and set reachability. IEEE T. Neur. Net. Learn. 29 (2018), 6402-6408.
DOI |
MR 3891710
[12] Heidel, J., Maloney, J., Farrow, C., Rogers, J.A.:
Finding cycles in synchronous Boolean networks with applications to biochemical systems. Int. J. Bifurcat. Chaos 13 (2003), 535-552.
DOI 10.1142/S0218127403006765 |
MR 1981054
[13] Kauffman, S. A.:
Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22 (1968), 437-467.
DOI |
MR 2436652
[14] Kauffman, S. A.:
At home in the universe. Math. Soc. Sci. 1 (1997), 94-95.
MR 1626501
[16] Laschov, D., Margaliot, M., Even, G.:
Observability of Boolean networks: A graph-theoretic approach. Automatica 49 (2013), 2351-2362.
DOI |
MR 3072626
[17] Le, S. T., Wu, Y. H., Toyoda, M.:
A congestion game framework for service chain composition in NFV with function benefit. Inform. Science 514 (2020), 512-522.
DOI |
MR 4046121
[18] Li, Y., Feng, J. E., Wang, B.:
Output feedback observability of switched Boolean control networks. Infrom. Sci. 612 (2022), 612-625.
DOI
[19] Li, Y., Feng, J. E., Zhu, S.:
Controllability and reachability of periodically time-variant mixed-valued logical control networks. Circ. Syst. Signal PR 40 (2021), 1-16.
DOI |
MR 1396882
[20] Fornasini, E., Valcher, M.:
Observability and reconstructibility of probabilistic Boolean networks. IEEE Contr. Syst. Lett. 4 (2019), 319-324.
DOI |
MR 4211304
[21] Li, F., Ho, D.:
Observability of Boolean networks with redundant channels. IEEE T. Circuits-II. 67 (2019), 1989-1993.
DOI
[22] Li, F., Sun, J.:
Observability analysis of Boolean control networks with impulsive effects. IET Control Theory A 5 (2011), 1609-1616.
DOI |
MR 2883333
[23] Li, F., Sun, J., Wu, Q.:
Observability of Boolean control networks with state time delays. IEEE Trans. Neural Netw. 22 (2011), 948-954.
DOI
[24] Liu, Y., Zhong, J., Ho, D. W., Gui, W.:
Minimal observability of Boolean networks. Sci. China Inform. Sci. 65 (2022), 1-12.
DOI |
MR 4404189
[25] Liu, Y., Wang, L., Yang, Y., Wu, Z. G.:
Minimal observability of Boolean control networks. Syst. Control Lett. 163 (2022), 105204.
DOI |
MR 4405482
[26] Li, Y., Feng, J. E., Wang, B.:
Observability of singular Boolean control networks with state delays. J. Franklin I. 359 (2022), 331-351.
DOI |
MR 4364957
[27] Li, R., Zhang, Q., Zhang, J., Chu, T.:
Distributional observability of probabilistic Boolean networks. Syst. Control Lett. 156 (2021), 105001.
DOI |
MR 4299865
[28] Liu, Y., Cao, J., Wang, L., Wu, Z. G.:
On pinning control reachability of probabilistic Boolean control networks. IET Control Theory A 63 (2020), 1-3.
DOI |
MR 4013798
[29] Liu, Z., Zhong, J., Liu, Y., Gui, W.:
Weak stabilization of Boolean networks under state-flipped control. IEEE T. Neur. Net. Learn. 5 (2021), 2693-2700.
DOI |
MR 4589423
[30] Lu, J., Zhong, J., Huang, C., Cao, J.:
On pinning controllability of Boolean control networks. IEEE T. Automat. Control 61 (2015), 1658-1663.
DOI |
MR 3508713
[31] Machado, A. M., Bazzan, A. L.: Self-adaptation in a network of social drivers: Using random boolean networks. In: Proc. 2011 Workshop on Organic Computing, Paris 2011, pp. 33-40.
[32] Meng, M., Li, L.:
Stability and pinning stabilization of markovian jump Boolean networks. IEEE T. Circuits II 69 (2022), 3565-3569.
DOI
[33] Pan, Q., Zhong, J., Lin, L., Lin, B., Liu, X.:
Finite time observability of probabilistic Boolean control networks. Asian J. Control 25 (2022), 325-334.
DOI |
MR 4562337
[34] Toyoda, M., Wu, Y. H.:
Mayer-type optimal control of probabilistic Boolean control network with uncertain selection probabilities. IEEE T. Cybernetics 51 (2021), 3079-3092.
DOI
[35] Wang, J., Liu, Y., Li, H.:
Finite-time controllability and set controllability of impulsive probabilistic Boolean control networks. IEEE Access 8 (2020), 111995-112002.
DOI
[36] Wang, L., Liu, Y., Wu, Z. G., Lu, J., Yu, L.:
Stabilization and finite stabilization of probabilistic Boolean control networks. IEEE T. Syst. Man CY-S. 51 (2019), 1599-1566.
DOI |
MR 3901770
[37] Wu, Y. H., Cheng, D. Z., Ghosh, B. K., Shen, T.:
Recent advances in optimization and game theoretic control for networked systems. Asian J. Control 21 (2019), 2493-2512.
DOI |
MR 4067608
[38] Wu, G., Dai, L., Liu, Z., Chen, T., Pan, J.:
Online observability of Boolean control networks. IFAC - PapersOnLine 53 (2020), 1057-1064.
DOI
[39] Wu, Y. H., Guo, Y. Q., Toyoda, M.:
Policy iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks. IEEE T. Neur. Net. Learn. 32 (2020), 2910-2924.
DOI |
MR 4285216
[40] Wu, Y. H., Sun, X. M., Zhao, X., Shen, T. L.:
Optimal control of Boolean control networks with average cost: A policy iteration approach. Automatica 100 (2019), 378-387.
DOI |
MR 3885198
[41] Wu, Y. H., Xu, J., Sun, X., Wang, W.:
Observability of Boolean multiplex control networks. Sci. Rep. 7 (2017), 46495.
DOI
[42] Yu, Y., Meng, M., Feng, J. E.:
Observability of Boolean networks via matrix equations. Automatica 111 (2020), 108621.
DOI |
MR 4039368
[43] Zhu, S., Feng, J. E., Zhao, J.:
State feedback for set stabilization of markovian jump Boolean control networks. Discrete Cont. Dyn. Syst. 14 (2021), 1591-1605.
DOI |
MR 4220582
[44] Zhu, Q., Liu, Y., Lu, J., Cao, J.:
Controllability and observability of Boolean control networks via sampled-data control. IEEE T. Control Netw. 6 (2018), 1291-1301.
DOI |
MR 4052453
[45] Zhang, Q. L., Feng, J. E., Wang, B.:
Set reachability of markovian jump Boolean networks and its applications. IET Control Theory A 14 (2020), 2914-2923.
DOI |
MR 4418022
[46] Zhang, K., Zhang, L.:
Observability of Boolean control networks: A unified approach based on finite automata. IEEE T. Automat. Control 61 (2016), 2733-2738.
DOI |
MR 3545104
[47] Zhang, K., Zhang, L., Xie, L.:
Finite automata approach to observability of switched Boolean control networks. Nonlinear Anal-Hybri. 19 (2016), 186-197.
DOI |
MR 3425354
[48] Zhong, J., Lu, J., Huang, T., Ho, D. W.:
Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. IEEE T. Cybernetics 47 (2017), 3482-3493.
DOI
[49] Zhou, R., Guo, Y. Q., Gui, W.:
Set reachability and observability of probabilistic Boolean networks. Automatica 106 (2019), 230-241.
DOI |
MR 3952584
[50] Zhu, Q., Liu, Y., Lu, J., Cao, J.:
Observability of Boolean control networks. Sci. China Inform. Sci. 61 (2018), 1-12.
DOI |
MR 3718227