Article
Keywords:
groupoid; division; quasigroup; cover
Summary:
Let $G$ be a division groupoid that is not a quasigroup. For each regular cardinal $\alpha>|G|$ we construct a quasigroup $Q$ on $G\times\alpha$ that is a quasigroup cover of $G$ (i.e., $G$ is a homomorphic image of $Q$ and $G$ is not an image of any quasigroup that is a proper factor of $Q$). We also show how to easily obtain quasigroup covers from free quasigroups.
References:
[6] Bruck R. H.:
A Survey of Binary Systems. Gruppentheorie, Ergebnisse der Mathematik und ihre Grenzgebiete, (N.F.), 20, Springer, Berlin, 1958.
MR 0093552 |
Zbl 0141.01401
[7] Evans T.:
On multiplicative systems defined by generators and relations. I. Normal form theorems. Proc. Cambridge Philos. Soc. 47 (1951), 637–649.
MR 0043764
[8] Garrison G. N.:
Quasi-groups. Ann. of Math. (2) 41 (1940), 474–487.
MR 0002150
[10] Kepka T., Němec P.:
In memory of Jaroslav Ježek. Acta Univ. Carolin. Math. Phys. 53 (2012), no. 2, 3–4.
MR 3099636