Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
groupoid; division; quasigroup; cover
Summary:
Let $G$ be a division groupoid that is not a quasigroup. For each regular cardinal $\alpha>|G|$ we construct a quasigroup $Q$ on $G\times\alpha$ that is a quasigroup cover of $G$ (i.e., $G$ is a homomorphic image of $Q$ and $G$ is not an image of any quasigroup that is a proper factor of $Q$). We also show how to easily obtain quasigroup covers from free quasigroups.
References:
[1] Albert A. A.: Qusigroups. I. Trans. Amer. Math. Soc. 54 (1943), 507–519. DOI 10.1090/S0002-9947-1943-0009962-7 | MR 0009962
[2] Baer R.: The homomorphism theorems for loops. Amer. J. Math. 67 (1945), 458–460. DOI 10.2307/2371960 | MR 0012302 | Zbl 0063.00166
[3] Bates G. E., Kiokemeister F.: A note on homomorphic mapping of quasigroups into multiplicative systems. Bull. Amer. Math. Soc. 54 (1948), 1180–1185. DOI 10.1090/S0002-9904-1948-09146-7 | MR 0027768
[4] Bruck R. H.: Simple quasigroups. Bull. Amer. Math. Soc. 50 (1944), 769–781. DOI 10.1090/S0002-9904-1944-08236-0 | MR 0011311
[5] Bruck R. H.: Some results in the theory of linear non-associative algebras. Trans. Amer. Math. Soc. 56 (1944), 141–199. DOI 10.1090/S0002-9947-1944-0011083-5 | MR 0011083
[6] Bruck R. H.: A Survey of Binary Systems. Gruppentheorie, Ergebnisse der Mathematik und ihre Grenzgebiete, (N.F.), 20, Springer, Berlin, 1958. MR 0093552 | Zbl 0141.01401
[7] Evans T.: On multiplicative systems defined by generators and relations. I. Normal form theorems. Proc. Cambridge Philos. Soc. 47 (1951), 637–649. MR 0043764
[8] Garrison G. N.: Quasi-groups. Ann. of Math. (2) 41 (1940), 474–487. MR 0002150
[9] Hausmann B. A., Ore O.: Theory of quasi-groups. Amer. J. Math. 59 (1937), no. 4, 983–1004. DOI 10.2307/2371362 | MR 1507296
[10] Kepka T., Němec P.: In memory of Jaroslav Ježek. Acta Univ. Carolin. Math. Phys. 53 (2012), no. 2, 3–4. MR 3099636
[11] Kiokemeister F.: A theory of normality for quasigroups. Amer. J. Math. 70 (1948), 99–106. DOI 10.2307/2371934 | MR 0023252
Partner of
EuDML logo