Previous |  Up |  Next

Article

Title: Oscillation of second-order quasilinear retarded difference equations via canonical transform (English)
Author: Chatzarakis, George E.
Author: Rajasekar, Deepalakshmi
Author: Sivagandhi, Saravanan
Author: Thandapani, Ethiraju
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 1
Year: 2024
Pages: 39-47
Summary lang: English
.
Category: math
.
Summary: We study the oscillatory behavior of the second-order quasi-linear retarded difference equation $$ \Delta (p(n)(\Delta y(n))^\alpha )+\eta (n) y^\beta (n- k)=0 $$ under the condition $\sum _{n=n_0}^\infty p^{-\frac{1}{\alpha }}(n)<\infty $ (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results. (English)
Keyword: quasi-linear
Keyword: difference equation
Keyword: retarded
Keyword: second-order
Keyword: oscillation
MSC: 39A10
MSC: 39A21
idZBL: Zbl 07830542
idMR: MR4715555
DOI: 10.21136/MB.2023.0090-22
.
Date available: 2024-03-13T10:17:32Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152291
.
Reference: [1] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillation Theory.Hindwai, New York (2005). Zbl 1084.39001, MR 2179948, 10.1155/9789775945198
Reference: [2] Bolat, Y., Alzabut, J. O.: On the oscillation of higher-order half-linear delay difference equations.Appl. Maths. Inf. Sci. 6 (2012), 423-427. MR 2970650
Reference: [3] Chatzarakis, G. E., Grace, S. R.: Oscillation of 2nd-order nonlinear noncanonical difference equations with deviating arguments.J. Nonlinear Model. Anal. 3 (2021), 495-504. 10.12150/jnma.2021.495
Reference: [4] Chatzarakis, G. E., Grace, S. R., Jadlovská, I.: Oscillation theorems for certain second-order nonlinear retarded difference equations.Math. Slovaca 71 (2021), 871-880. Zbl 1479.39009, MR 4292928, 10.1515/ms-2021-0027
Reference: [5] Chatzarakis, G. E., Indrajith, N., Panetsos, S. L., Thandapani, E.: Oscillations of second-order noncanonical advanced difference equations via canonical transformation.Carpathian J. Math. 38 (2022), 383-390. MR 4385540, 10.37193/CJM.2022.02.09
Reference: [6] Chatzarakis, G. E., Indrajith, N., Thandapani, E., Vidhyaa, K. S.: Oscillatory behavior of second-order non-canonical retarded difference equations.Aust. J. Math. Anal. Appl. 18 (2021), Article ID 20, 11 pages. Zbl 7612942, MR 4371516
Reference: [7] El-Morshedy, H. A.: Oscillation and nonoscillation criteria for half-linear second order difference equations.Dyn. Syst. Appl. 15 (2006), 429-450. MR 2367656
Reference: [8] Grace, S. R., Agarwal, R. P., Bohner, M., O'Regan, D.: Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations.Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3463-3471. Zbl 1221.34083, MR 2502411, 10.1016/j.cnsns.2009.01.003
Reference: [9] Kanagasabapathi, R., Selvarangam, S., Graef, J. R., Thandapani, E.: Oscillation results using linearization of quasi-linear second order delay difference equations.Mediterr. J. Math. 18 (2021), Article ID 248, 14 pages. Zbl 1477.39004, MR 4330445, 10.1007/s00009-021-01920-4
Reference: [10] Saker, S. H.: Oscillation of second order nonlinear delay difference equations.Bull. Korean Math. Soc. 40 (2003), 489-501. Zbl 1035.39008, MR 1996857, 10.4134/BKMS.2003.40.3.489
Reference: [11] Sakar, S. H.: Oscillation theorems for second-order nonlinear delay difference equations.Period. Math. Hung. 47 (2003), 201-213. Zbl 1050.39019, MR 2025623, 10.1023/B:MAHU.0000010821.30713.be
Reference: [12] Srinivasan, R., Saravanan, S., Graef, J. R., Thandapani, E.: Oscillation of second-order half-linear retarded difference equations via canonical transform.Nonauton. Dyn. Syst. 9 (2022), 163-169. Zbl 1497.39008, MR 4471376, 10.1515/msds-2022-0151
Reference: [13] Thandapani, E., Ravi, K.: Oscillation of second-order half-linear difference equations.Appl. Math. Lett. 13 (2000), 43-49. Zbl 0977.39003, MR 1751522, 10.1016/S0893-9659(99)00163-9
Reference: [14] Thandapani, E., Ravi, K., Graef, J. R.: Oscillation and comparison theorems for half-linear second-order difference equations.Comput. Math. Appl. 42 (2001), 953-960. Zbl 0983.39006, MR 1846199, 10.1016/S0898-1221(01)00211-5
Reference: [15] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations.Trans. Am. Math. Soc. 189 (1974), 319-327. Zbl 0289.34051, MR 0330632, 10.1090/S0002-9947-1974-0330632-X
Reference: [16] Zhang, B.-G., Cheng, S. S.: Oscillation criteria and comparison theorems for delay difference equations.Fasc. Math. 25 (1995), 13-32. Zbl 0830.39005, MR 1339622
.

Files

Files Size Format View
MathBohem_149-2024-1_4.pdf 200.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo