Previous |  Up |  Next

Article

Title: Complete monotonicity of the remainder in an asymptotic series related to the psi function (English)
Author: Yang, Zhen-Hang
Author: Tian, Jing-Feng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 337-351
Summary lang: English
.
Category: math
.
Summary: Let $p,q\in \mathbb {R}$\ with $p-q\geq 0$, $\sigma = \frac 12 ( p+q-1)$ and $s=\frac 12 ( 1-p+q)$, and let $$ \mathcal {D}_{m} ( x;p,q ) =\mathcal {D}_{0} ( x;p,q ) +\sum _{k=1}^{m}\frac {B_{2k} ( s) }{2k ( x+\sigma ) ^{2k}} , $$ where $$ \mathcal {D}_{0} ( x;p,q ) =\frac {\psi ( x+p ) +\psi ( x+q ) }{2}-\ln ( x+\sigma ) . $$ We establish the asymptotic expansion $$ \mathcal {D}_{0} ( x;p,q ) \sim -\sum _{n=1}^{\infty } \frac {B_{2n} ( s ) }{2n ( x+\sigma ) ^{2n}} \quad \text {as} \^^Mx\rightarrow \infty , $$ where $B_{2n} ( s ) $ stands for the Bernoulli polynomials. Further, we prove that the functions $( -1) ^{m}\mathcal {D}_{m} ( x;p,q )$ and $( -1) ^{m+1}\mathcal {D}_{m} ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma ,\infty )$ for every $m\in \mathbb {N}_{0}$ if and only if $p-q\in [ 0, \tfrac 12 ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results. (English)
Keyword: psi function
Keyword: asymptotic expansion
Keyword: complete monotonicity
MSC: 26A48
MSC: 33B15
MSC: 41A60
idZBL: Zbl 07893383
idMR: MR4717838
DOI: 10.21136/CMJ.2024.0354-23
.
Date available: 2024-03-13T10:12:37Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152284
.
Reference: [1] Abramowitz, M., (eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.National Bureau of Standards, Applied Mathematics Series 55. John Wiley, New York (1972). Zbl 0543.33001, MR 0208798
Reference: [2] Alzer, H.: On some inequalities for the gamma and psi functions.Math. Comput. 66 (1997), 373-389. Zbl 0854.33001, MR 1388887, 10.1090/S0025-5718-97-00807-7
Reference: [3] Atanassov, R. D., Tsoukrovski, U. V.: Some properties of a class of logarithmically completely monotonic functions.C. R. Acad. Bulg. Sci. 41 (1988), 21-23 \99999MR99999 0939205 \goodbreak. Zbl 0658.26010, MR 0939205
Reference: [4] Chen, C.-P., Paris, R. B.: Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function.Appl. Math. Comput. 250 (2015), 514-529. Zbl 1328.33001, MR 3285558, 10.1016/j.amc.2014.11.010
Reference: [5] Fields, J. L.: The uniform asymptotic expansion of a ratio of Gamma functions.Constructive Theory of Functions Publishing House of the Bulgarian Academy of Sciences, Sofia (1970), 171-176. Zbl 0263.33002, MR 0399527
Reference: [6] Frenzen, C. L.: Error bounds for asymptotic expansions of the ratio of two gamma functions.SIAM J. Math. Anal. 18 (1987), 890-896. Zbl 0625.41022, MR 0883576, 10.1137/0518067
Reference: [7] Luke, Y. L.: On the ratio of two gamma functions.Jñ\=an\=abha 9-10 (1980), 143-148. Zbl 0504.33001, MR 0683706
Reference: [8] Olver, F. W. J., Lozier, D. W., Boisvert, R. F., (eds.), C. W. Clark: NIST Handbook of Mathematical Functions.Cambridge University Press, Cambridge (2010). Zbl 1198.00002, MR 2723248, 10.1023/A:1022915830921
Reference: [9] Qi, F., Chen, C.-P.: A complete monotonicity property of the gamma function.J. Math. Anal. Appl. 296 (2004), 603-607. Zbl 1046.33001, MR 2075188, 10.1016/j.jmaa.2004.04.026
Reference: [10] Schilling, R. L., Song, R., Vondraček, Z.: Bernstein functions: Theory and Applications.de Gruyter Studies in Mathematics 37. Walter de Gruyter, Berlin (2010). Zbl 1197.33002, MR 2598208, 10.1515/9783110269338
Reference: [11] Tian, J.-F., Yang, Z.: Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders.J. Math. Anal. Appl. 493 (2021), Article ID 124545, 19 pages. Zbl 1450.33006, MR 4144294, 10.1016/j.jmaa.2020.124545
Reference: [12] Widder, D. V.: The Laplace Transform.Princeton Mathematical Series 6. Princeton University Press, Princeton (1941). Zbl 0063.08245, MR 0005923
Reference: [13] Yang, Z.-H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function.J. Math. Anal. Appl. 441 (2016), 549-564. Zbl 1336.33005, MR 3491542, 10.1016/j.jmaa.2016.04.029
Reference: [14] Yang, Z.-H., Chu, Y.-M.: Jordan type inequalities for hyperbolic functions and their applications.J. Funct. Spaces 2015 (2015), Article ID 370979, 4 pages. Zbl 1323.26021, MR 3321607, 10.1155/2015/370979
Reference: [15] Yang, Z.-H., Tian, J.-F., Ha, M.-H.: A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder.Proc. Am. Math. Soc. 148 (2020), 2163-2178. Zbl 1435.41034, MR 4078101, 10.1090/proc/14917
Reference: [16] Yang, Z., Tian, J.-F.: Complete monotonicity of the remainder of the asymptotic series for the ratio of two gamma functions.J. Math. Anal. Appl. 517 (2023), Article ID 126649, 15 pages. Zbl 07595153, MR 4477953, 10.1016/j.jmaa.2022.126649
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo