Previous |  Up |  Next

Article

Title: Polyanalytic Besov spaces and approximation by dilatations (English)
Author: Abkar, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 305-317
Summary lang: English
.
Category: math
.
Summary: Using partial derivatives $\partial f / \partial z$ and $\partial f / \partial \bar {z}$, we introduce Besov spaces of polyanalytic functions in the open unit disk, as well as in the upper half-plane. We then prove that the dilatations of functions in certain weighted polyanalytic Besov spaces converge to the same functions in norm. When restricted to the open unit disk, we prove that each polyanalytic function of degree $q$ can be approximated in norm by polyanalytic polynomials of degree at most $q$. (English)
Keyword: mean approximation
Keyword: polyanalytic Besov space
Keyword: polyanalytic Bergman space
Keyword: dilatation
Keyword: non-radial weight
Keyword: angular weight
MSC: 30E10
MSC: 30H20
MSC: 30H25
MSC: 46E15
idZBL: Zbl 07893381
idMR: MR4717836
DOI: 10.21136/CMJ.2023.0347-23
.
Date available: 2024-03-13T10:11:24Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152282
.
Reference: [1] Abkar, A.: Norm approximation by polynomials in some weighted Bergman spaces.J. Funct. Anal. 191 (2002), 224-240. Zbl 1059.30049, MR 1911185, 10.1006/jfan.2001.3851
Reference: [2] Abkar, A.: Approximation in weighted analytic Besov spaces and in generalized Fock spaces.Complex Anal. Oper. Theory 16 (2022), Article ID 11, 19 pages. Zbl 1485.30018, MR 4357427, 10.1007/s11785-021-01188-2
Reference: [3] Abkar, A.: Mean approximation in Bergman spaces of polyanalytic functions.Anal. Math. Phys. 12 (2022), Article ID 52, 16 pages. Zbl 1486.30130, MR 4396660, 10.1007/s13324-022-00671-z
Reference: [4] Abreu, L. D., Feichtinger, H. G.: Function spaces of polyanalytic functions.Harmonic and Complex Analysis and its Applications Trends in Mathematics. Springer, Cham (2014), 1-38. Zbl 1318.30070, MR 3203099, 10.1007/978-3-319-01806-5_1
Reference: [5] Balk, M. B.: Polyanalytic Functions.Mathematical Research 63. Akademie, Berlin (1991). Zbl 0764.30038, MR 1184141
Reference: [6] Duren, P., Gallardo-Gutiérrez, E. A., Montes-Rodríguez, A.: A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces.J. Lond. Math. Soc. 39 (2007), 459-466. Zbl 1196.30046, MR 2331575, 10.1112/blms/bdm026
Reference: [7] Haimi, A., Hedenmalm, H.: Asymptotic expansion of polyanalytic Bergman kernels.J. Funct. Anal. 267 (2014), 4667-4731. Zbl 1310.30040, MR 3275106, 10.1016/j.jfa.2014.09.002
Reference: [8] Košelev, A. D.: On the kernel function of the Hilbert space of functions polyanalytic in a disk.Dokl. Akad. Nauk SSSR 232 (1977), 277-279 Russian. Zbl 0372.30034, MR 0427648
Reference: [9] Muskhelishvili, N. I.: Some Basic Problems of the Mathematical Theory of Elasticity.Nauka, Moscow (1966), Russian. Zbl 0151.36201, MR 0202367
Reference: [10] Ramazanov, A. K.: On the structure of spaces of polyanalytic functions.Math. Notes 72 (2002), 692-704. Zbl 1062.30055, MR 1963139, 10.1023/A:1021469308636
Reference: [11] Vasilevski, N. L.: On the structure of Bergman and poly-Bergman spaces.Integral Equations Oper. Theory 33 (1999), 471-488. Zbl 0931.46023, MR 1682807, 10.1007/BF01291838
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo