Previous |  Up |  Next

Article

Title: Lie perfect, Lie central extension and generalization of nilpotency in multiplicative Lie algebras (English)
Author: Singh, Dev Karan
Author: Pandey, Mani Shankar
Author: Kumar, Shiv Datt
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 283-299
Summary lang: English
.
Category: math
.
Summary: This paper aims to introduce and explore the concept of Lie perfect multiplicative Lie algebras, with a particular focus on their connections to the central extension theory of multiplicative Lie algebras. The primary objective is to establish and provide proof for a range of results derived from Lie perfect multiplicative Lie algebras. Furthermore, the study extends the notion of Lie nilpotency by introducing and examining the concept of local nilpotency within multiplicative Lie algebras. The paper presents an innovative adaptation of the Hirsch-Plotkin theorem specifically tailored for multiplicative Lie algebras.\looseness -1 (English)
Keyword: multiplicative Lie algebra
Keyword: commutator
Keyword: nilpotent group
Keyword: perfect group
Keyword: central extensions
MSC: 17A99
MSC: 19G24
MSC: 20A99
MSC: 20F19
idZBL: Zbl 07893379
idMR: MR4717834
DOI: 10.21136/CMJ.2024.0261-23
.
Date available: 2024-03-13T10:10:21Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152280
.
Reference: [1] Bak, A., Donadze, G., Inassaridze, N., Ladra, M.: Homology of multiplicative Lie rings.J. Pure Appl. Algebra 208 (2007), 761-777. Zbl 1138.18007, MR 2277710, 10.1016/j.jpaa.2006.03.029
Reference: [2] Donadze, G., Inassaridze, N., Ladra, M., Vieites, A. M.: Exact sequences in homology of multiplicative Lie rings and a new version of Stallings' theorem.J. Pure Appl. Algebra 222 (2018), 1786-1802. Zbl 1408.18031, MR 3763283, 10.1016/j.jpaa.2017.08.006
Reference: [3] Donadze, G., Ladra, M.: More on five commutator identities.J. Homotopy Relat. Struct. 2 (2007), 45-55. Zbl 1184.20033, MR 2326932
Reference: [4] Ellis, G. J.: On five well-known commutator identities.J. Aust. Math. Soc., Ser. A 54 (1993), 1-19. Zbl 0777.20001, MR 1195654, 10.1017/S1446788700036934
Reference: [5] Lal, R.: Algebra 2. Linear Algebra, Galois Theory, Representation Theory, Group Extensions and Schur Multiplier.Infosys Science Foundation Series. Springer, Singapore (2017). Zbl 1369.00003, MR 3642661, 10.1007/978-981-10-4256-0
Reference: [6] Lal, R., Upadhyay, S. K.: Multiplicative Lie algebras and Schur multiplier.J. Pure Appl. Algebra 223 (2019), 3695-3721. Zbl 1473.17050, MR 3944451, 10.1016/j.jpaa.2018.12.003
Reference: [7] Pandey, M. S., Lal, R., Upadhyay, S. K.: Lie commutator, solvability and nilpotency in multiplicative Lie algebras.J. Algebra Appl. 20 (2021), Article ID 2150138, 11 pages. Zbl 07411748, MR 4297322, 10.1142/S0219498821501383
Reference: [8] Pandey, M. S., Upadhyay, S. K.: Theory of extensions of multiplicative Lie algebras.J. Lie Theory 31 (2021), 637-658. Zbl 1486.17033, MR 4257164
Reference: [9] Pandey, M. S., Upadhyay, S. K.: Classification of multiplicative Lie algebra structures on a finite group.Colloq. Math. 168 (2022), 25-34. Zbl 1514.17025, MR 4378560, 10.4064/cm8397-12-2020
Reference: [10] Point, F., Wantiez, P.: Nilpotency criteria for multiplicative Lie algebras.J. Pure Appl. Algebra 111 (1996), 229-243. Zbl 0863.20015, MR 1394354, 10.1016/0022-4049(95)00115-8
Reference: [11] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80. Springer, New York (1996). Zbl 0836.20001, MR 1357169, 10.1007/978-1-4419-8594-1
Reference: [12] Walls, G. L.: Multiplicative Lie algebras.Turk. J. Math. 43 (2019), 2888-2897. Zbl 1429.20028, MR 4038386, 10.3906/mat-1904-55
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo