Title: | Green-Liouville approximation and correct solvability in $L_p(\mathbb R)$ of the general Sturm-Liouville equation (English) |
Author: | Chernyavskaya, Nina |
Author: | Shuster, Leonid |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 1 |
Year: | 2024 |
Pages: | 247-272 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We consider the equation $$ -(r(x) y'(x))'+q(x)y(x)=f(x),\quad x\in \mathbb R, $$ where $f\in L_p(\mathbb R)$, $p\in (1,\infty )$ and $$ r>0,\quad \frac {1}{r}\in L_1^{\rm loc}(\mathbb R),\quad q\in L_1^{\rm loc}(\mathbb R). $$ For particular equations of this form, we suggest some methods for the study of the question on requirements to the functions $r$ and $q$ under which the above equation is correctly solvable in the space $L_p(\mathbb R),$ $p\in (1,\infty ).$ (English) |
Keyword: | Green-Liouville approximation |
Keyword: | correct solvability |
Keyword: | general Sturm-Liouville equation |
MSC: | 34B24 |
MSC: | 34B27 |
idZBL: | Zbl 07893377 |
idMR: | MR4717832 |
DOI: | 10.21136/CMJ.2024.0175-23 |
. | |
Date available: | 2024-03-13T10:09:19Z |
Last updated: | 2024-12-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152278 |
. | |
Reference: | [1] Chernyavskaya, N. A., Shuster, L. A.: On the WKB-method.Differ. Uravn. 25 (1989), 1826-1829 Russian. Zbl 0702.34053, MR 1025660 |
Reference: | [2] Chernyavskaya, N., Shuster, L.: Necessary and sufficient conditions for the solvability of a problem of Hartman and Wintner.Proc. Am. Math. Soc. 125 (1997), 3213-3228. Zbl 0884.34063, MR 1443146, 10.1090/S0002-9939-97-04186-5 |
Reference: | [3] Chernyavskaya, N., Shuster, L.: Estimates for the Green function of a general Sturm- Liouville operator and their applications.Proc. Am. Math. Soc. 127 (1999), 1413-1426. Zbl 0918.34032, MR 1625725, 10.1090/S0002-9939-99-05049-2 |
Reference: | [4] Chernyavskaya, N., Shuster, L.: Regularity of the inversion problem for a Sturm-Liouville equation in $L_p(\Bbb R)$.Methods Appl. Anal. 7 (2000), 65-84. Zbl 0985.34019, MR 1796006, 10.4310/MAA.2000.v7.n1.a4 |
Reference: | [5] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability of the Sturm-Liouville equation in the space $L_p(\Bbb R)$.Proc. Am. Math. Soc. 130 (2002), 1043-1054. Zbl 0994.34014, MR 1873778, 10.1090/S0002-9939-01-06145-7 |
Reference: | [6] Chernyavskaya, N. A., Shuster, L. A.: Conditions for correct solvability of a simplest singular boundary value problem of general form. I.Z. Anal. Anwend. 25 (2006), 205-235. Zbl 1122.34021, MR 2229446, 10.4171/ZAA/1285 |
Reference: | [7] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability in $L_p(\Bbb R)$ of a general Sturm-Liouville equation.J. Lond. Math. Soc., II. Ser. 80 (2009), 99-120. Zbl 1188.34036, MR 2520380, 10.1112/jlms/jdp012 |
Reference: | [8] Chernyavskaya, N. A., Shuster, L. A.: Methods of analysis of the condition for correct solvability in $L_p(\Bbb R)$ of general Sturm-Liouville equations.Czech. Math. J. 64 (2014), 1067-1098. Zbl 1349.34093, MR 3304799, 10.1007/s10587-014-0154-1 |
Reference: | [9] Chernyavskaya, N., Shuster, L.: Criteria for correct solvability of a general Sturm-Liouville equation in the space $L_1(\Bbb R)$.Boll. Unione Mat. Ital. 11 (2018), 417-443. Zbl 1404.34019, MR 3869579, 10.1007/s40574-017-0144-y |
Reference: | [10] Chernyavskaya, N., Shuster, L.: Principal fundamental system of solutions, the Hartman-Wintner problem and correct solvability of the general Sturm-Liouville equation.Available at https://arxiv.org/abs/2210.02911 (2022), 29 pages. MR 3376914, 10.48550/arXiv.2210.02911 |
Reference: | [11] Davies, E. B., Harrell, E. M.: Conformally flat Riemannian metrics, Schrödinger operators, and semiclassical approximation.J. Differ. Equations 66 (1987), 165-188. Zbl 0616.34020, MR 0871993, 10.1016/0022-0396(87)90030-1 |
Reference: | [12] Hartman, P.: Ordinary Differential Equations.John Wiley & Sons, New York (1964). Zbl 0125.32102, MR 0171038 |
Reference: | [13] Mynbaev, K. T., Otelbaev, M. O.: Weighted Functional Spaces and the Spectrum of Differential Operators.Nauka, Moscow (1988), Russian. Zbl 0651.46037, MR 0950172 |
Reference: | [14] Olver, F. W. J.: Asymptotics and Special Functions.Academic Press, New York (1974). Zbl 0303.41035, MR 0435697, 10.1016/c2013-0-11254-8 |
Reference: | [15] Titchmarsh, E. C.: The Theory of Functions.Oxford University Press, Oxford (1932). Zbl 0005.21004, MR 3728294 |
Reference: | [16] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis: An Introduction to the General Theory on Infinite Processes and of Analytic Functions.Cambridge University Press, Cambridge (1962). Zbl 0105.26901, MR 0178117, 10.1017/CBO9780511608759 |
. |
Fulltext not available (moving wall 24 months)