Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
extriangulated category; extriangulated equivalence; Hall algebra; quantum cluster algebra
Summary:
For any positive integer $n$, let $A_n$ be a linearly oriented quiver of type $A$ with $n$ vertices. It is well-known that the quotient of an exact category by projective-injectives is an extriangulated category. We show that there exists an extriangulated equivalence between the extriangulated categories $\mathcal {M}_{n+1}$ and $\mathcal {F}_n$, where $\mathcal {M}_{n+1}$ and $\mathcal {F}_n$ are the two extriangulated categories corresponding to the representation category of $A_{n+1}$ and the morphism category of projective representations of $A_n$, respectively. As a by-product, the Hall algebras of $\mathcal {M}_{n+1}$ and $\mathcal {F}_n$ are isomorphic. As an application, we use the Hall algebra of $\mathcal {M}_{2n+1}$ to relate with the quantum cluster algebras of type $A_{2n}$.
References:
[1] Bautista, R.: The category of morphisms between projective modules. Commun. Algebra 32 (2004), 4303-4331. DOI 10.1081/AGB-200034145 | MR 2102451 | Zbl 1081.16025
[2] Bennett-Tennenhaus, R., Shah, A.: Transport of structure in higher homological algebra. J. Algebra 574 (2021), 514-549. DOI 10.1016/j.jalgebra.2021.01.019 | MR 4213630 | Zbl 1461.18004
[3] Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195 (2005), 405-455. DOI 10.1016/j.aim.2004.08.003 | MR 2146350 | Zbl 1124.20028
[4] Caldero, P., Keller, B.: From triangulated categories to cluster algebras. Invent. Math. 172 (2008), 169-211. DOI 10.1007/s00222-008-0111-4 | MR 2385670 | Zbl 1141.18012
[5] Chaio, C., Pratti, I., Souto-Salorio, M. J.: On sectional paths in a category of complexes of fixed size. Algebr. Represent. Theory 20 (2017), 289-311. DOI 10.1007/s10468-016-9643-2 | MR 3638350 | Zbl 1393.16009
[6] Chen, X., Ding, M., Zhang, H.: The cluster multiplication theorem for acyclic quantum cluster algebras. (to appear) in Int. Math. Res. Not. DOI 10.1093/imrn/rnad172 | MR 4675077
[7] Ding, M., Xu, F., Zhang, H.: Acyclic quantum cluster algebras via Hall algebras of morphisms. Math. Z. 296 (2020), 945-968. DOI 10.1007/s00209-020-02465-0 | MR 4159816 | Zbl 1509.17010
[8] Fomin, S., Zelevinsky, A.: Cluster algebras. I: Foundations. J. Am. Math. Soc. 15 (2002), 497-529. DOI 10.1090/S0894-0347-01-00385-X | MR 1887642 | Zbl 1021.16017
[9] Fu, C., Peng, L., Zhang, H.: Quantum cluster characters of Hall algebras revisited. Sel. Math., New Ser. 29 (2023), Article ID 4, 29 pages. DOI 10.1007/s00029-022-00811-0 | MR 4502761 | Zbl 07612807
[10] Gorsky, M., Nakaoka, H., Palu, Y.: Positive and negative extensions in extriangulated categories. Available at https://arxiv.org/abs/2103.12482 (2021), 51 pages. DOI 10.48550/arXiv.2103.12482
[11] Hubery, A.: From triangulated categories to Lie algebras: A theorem of Peng and Xiao. Trends in Representations Theory of Algebras and Related Topics Contemporary Mathematics 406. AMS, Providence (2006), 51-66. DOI 10.1090/conm/406 | MR 2258041 | Zbl 1107.16021
[12] Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. MR 3931945 | Zbl 1451.18021
[13] Ringel, C. M.: Hall algebras and quantum groups. Invent. Math. 101 (1990), 583-591. DOI 10.1007/BF01231516 | MR 1062796 | Zbl 0735.16009
[14] Sheng, J., Xu, F.: Derived Hall algebras and lattice algebras. Algebra Colloq. 19 (2012), 533-538. DOI 10.1142/S1005386712000399 | MR 2999262 | Zbl 1250.18013
[15] Toën, B.: Derived Hall algebras. Duke Math. J. 135 (2006), 587-615. DOI 10.1215/S0012-7094-06-13536-6 | MR 2272977 | Zbl 1117.18011
[16] Wang, L., Wei, J., Zhang, H.: Hall algebras of extriangulated categories. J. Algebra 610 (2022), 366-390. DOI 10.1016/j.jalgebra.2022.07.023 | MR 4466102 | Zbl 1502.18019
[17] Xiao, J., Xu, F.: Hall algebras associated to triangulated categories. Duke Math. J. 143 (2008), 357-373. DOI 10.1215/00127094-2008-021 | MR 2420510 | Zbl 1168.18006
Partner of
EuDML logo