Title: | Asymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory (English) |
Author: | Terapabkajornded, Yotsawat |
Author: | Orankitjaroen, Somsak |
Author: | Licht, Christian |
Author: | Weller, Thibaut |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 69 |
Issue: | 1 |
Year: | 2024 |
Pages: | 25-48 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We study the dynamic response of a thin viscoelastic plate made of a nonlinear Kelvin-Voigt material in bilateral contact with a rigid body along a part of its lateral boundary with Norton or Tresca friction. We opt for a direct use of the Trotter theory of convergence of semi-groups of operators acting on variable spaces. Depending on the various relative behaviors of the physical and geometrical data of the problem, the asymptotic analysis of its unique solution leads to different limit models whose properties are detailed. We highlight the appearance of an additional state variable that allows us to write these limit systems of equations in the same form as the genuine problem. (English) |
Keyword: | thin viscoelastic plate |
Keyword: | Norton or Tresca friction |
Keyword: | transient problem |
Keyword: | multivalued operator |
Keyword: | nonlinear semigroup of operators |
Keyword: | Trotter's theory of convergence of semi-groups |
MSC: | 74-10 |
idZBL: | Zbl 07830497 |
idMR: | MR4709332 |
DOI: | 10.21136/AM.2023.0013-23 |
. | |
Date available: | 2024-02-26T10:54:34Z |
Last updated: | 2024-12-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152251 |
. | |
Reference: | [1] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084 |
Reference: | [2] Bobrowski, A.: Convergence of One-Parameter Operator Semi-Groups in Models of Mathematical Biology and Elsewhere.New Mathematical Monographs 30. Cambridge University Press, Cambridge (2016). Zbl 1345.47001, MR 3526064, 10.1017/CBO9781316480663 |
Reference: | [3] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.North-Holland Mathematics Studies 5. North-Holland, Amsterdam (1973), French. Zbl 0252.47055, MR 0348562, 10.1016/s0304-0208(08)x7125-71 |
Reference: | [4] Ciarlet, P. G.: Mathematical Elasticity. Vol. 2. Theory of Plates.Studies in Mathematics and Its Applications 27. North Holland, Amsterdam (1997). Zbl 0888.73001, MR 1477663 |
Reference: | [5] Francfort, G., Leguillon, D., Suquet, P.: Homogénéisation de milieux viscoélastiques linéaires de Kelvin-Voigt.C. R. Acad. Sci., Paris, Sér. I 296 (1983), 287-290 French. Zbl 0534.73031, MR 0693795 |
Reference: | [6] Gaudiello, A., Monneau, R., Mossino, J., Murat, F., Sili, A.: Junction of elastic plates and beams.ESAIM, Control Optim. Calc. Var. 13 (2007), 419-457. Zbl 1133.35322, MR 2329170, 10.1051/cocv:2007036 |
Reference: | [7] Iosifescu, O., Licht, C.: Transient response of a thin linearly elastic plate with Norton or Tresca friction.Asymptotic Anal. 128 (2022), 555-570. Zbl 1504.35536, MR 4438595, 10.3233/ASY-211717 |
Reference: | [8] Iosifescu, O., Licht, C., Michaille, G.: Nonlinear boundary conditions in Kirchhoff-Love plate theory.J. Elasticity 96 (2009), 57-79. Zbl 1273.74172, MR 2504825, 10.1007/s10659-009-9198-0 |
Reference: | [9] Licht, C.: Thin linearly viscoelastic Kelvin-Voigt plates.C. R., Méc., Acad. Sci. Paris 341 (2013), 697-700. 10.1016/j.crme.2013.06.005 |
Reference: | [10] Licht, C., Weller, T.: Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media.Discrete Contin. Dyn. Syst., Ser. S 12 (2019), 1709-1741. Zbl 1462.82030, MR 3984717, 10.3934/dcdss.2019114 |
Reference: | [11] Licht, C., Weller, T.: Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners.C. R., Méc., Acad. Sci. Paris 347 (2019), 555-560. 10.1016/j.crme.2019.07.001 |
Reference: | [12] Migórski, S., Ochal, A., Sofonea, M.: Analysis of a frictional contact problem for viscoelastic materials with long memory.Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 687-705. Zbl 1287.74026, MR 2774134, 10.3934/dcdsb.2011.15.687 |
Reference: | [13] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043 |
Reference: | [14] Terapabkajornded, Y., Orankitjaroen, S., Licht, C.: Asymptotic model of linearly viscoelastic Kelvin-Voigt type plates via Trotter theory.Adv. Difference Equ. 2019 (2019), Article ID 186, 9 pages. Zbl 1459.74023, MR 3950287, 10.1186/s13662-019-2104-6 |
Reference: | [15] Trotter, H. F.: Approximation of semi-groups of operators.Pac. J. Math. 8 (1958), 887-919. Zbl 0099.10302, MR 0103420, 10.2140/pjm.1958.8.887 |
Reference: | [16] Zhikov, V. V., Pastukhova, S. E.: On the Trotter-Kato theorem in a variable space.Funct. Anal. Appl. 41 (2007), 264-270. Zbl 1158.47027, MR 2411603, 10.1007/s10688-007-0024-9 |
. |
Fulltext not available (moving wall 24 months)