Previous |  Up |  Next

Article

Title: Geometry of universal embedding spaces for almost complex manifolds (English)
Author: Clemente, Gabriella
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 1
Year: 2024
Pages: 35-60
Summary lang: English
.
Category: math
.
Summary: We investigate the geometry of universal embedding spaces for compact almost-complex manifolds of a given dimension, and related constructions that allow for an extrinsic study of the integrability of almost-complex structures. These embedding spaces were introduced by J-P. Demailly and H. Gaussier, and are complex algebraic analogues of twistor spaces. Their goal was to study a conjecture made by F. Bogomolov asserting the “transverse embeddability” of arbitrary compact complex manifolds into foliated algebraic varieties. In this work, we introduce a more general category of universal embedding spaces, and elucidate the geometric structure of related bundles, such as the integrability locus characterizing integrable almost-complex structures. Our approach could potentially lead to finding new obstructions to the existence of a complex structure, which may be useful for tackling Yau’s Challenge. (English)
Keyword: almost-complex manifolds
Keyword: complex structures
Keyword: integrability
Keyword: Nijenhuis tensor
Keyword: obstruction theory
Keyword: transverse embeddings
Keyword: fiber bundles
Keyword: vector bundles
MSC: 32L05
MSC: 32Q40
MSC: 32Q60
idZBL: Zbl 07830505
idMR: MR4709720
DOI: 10.5817/AM2024-1-35
.
Date available: 2024-02-07T14:13:12Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152026
.
Reference: [1] Arnol’d, V.I.: The Sturm theorems and symplectic geometry.Funct. Anal. Appl. 19 (4) (1985), 251–259. MR 0820079, 10.1007/BF01077289
Reference: [2] Audin, M.: Torus actions on symplectic manifolds.progress in mathematics ed., vol. 93, Birkhäuser Verlag, Basel, 2004, Second revised edition. Zbl 1062.57040, MR 2091310
Reference: [3] Bogomolov, F.: Complex manifolds and algebraic foliations.RIMS-1084 Kyoto Univ. (1996), 1–5.
Reference: [4] Bryant, R.: S-S. Chern’s study of almost complex structures on the six-sphere.Asian J. Math. 10 (3) (2006), 561–605. MR 2253159
Reference: [5] Ciliberto, C., Pedrini, C.: Real abelian varieties and real algebraic curves.Lectures in Real Geometry (Broglia, F., ed.), 1994, pp. 167–256. MR 1440212
Reference: [6] Crabb, M., James, I.: Fiberwise Homotopy Theory.Springer Monogr. Math., Springer-Verlag, London, 1998. MR 1646248
Reference: [7] Demailly, J-P.: Algebraic embeddings of complex and almost complex structures.Slides of a talk given at the CIME School on “Non-Kähler geometry” (Cetraro, Italy, July 12, 2018), https://www-fourier.ujf-grenoble.fr/$\sim $demailly/manuscripts/cetraro$\_$2018-print.pdf.
Reference: [8] Demailly, J-P.: Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials.Algebraic geometry: Santa Cruz 1995, Proc. Sympos. Pure Math. 62. Part 2, Amer. Math. Soc., Providence, RI, 1997, pp. 285–360. MR 1492539
Reference: [9] Demailly, J-P., Gaussier, H.: Algebraic embeddings of smooth almost complex structures.J. Eur. Math. Soc. 19 (2017), 3391–3419. MR 3713044, 10.4171/jems/742
Reference: [10] Diaz, L.O.: A note on Kirchoff’s theorem for almost complex spheres, I.arXiv:1804.05794.
Reference: [11] Newlander, A., Niremberg, L.: Complex analytic coordinates in almost complex manifolds.Ann. Math. 65 (3) (1957), 391–404. MR 0088770, 10.2307/1970051
Reference: [12] Yau, S-T.: Open problems in geometry.Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math. 54, Part 1, Amer. Math. Soc., Providence, RI, 1993. MR 1216573
.

Files

Files Size Format View
ArchMathRetro_060-2024-1_3.pdf 697.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo