Previous |  Up |  Next

Article

Title: Congruence preserving operations on the ring $\mathbb {Z}_{p^3}$ (English)
Author: Gavala, Cyril
Author: Ploščica, Miroslav
Author: Varga, Ivana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 4
Year: 2023
Pages: 519-535
Summary lang: English
.
Category: math
.
Summary: We investigate the interval $I(p^3)$ in the lattice of clones on the ring $\mathbb {Z}_{p^3}$ between the clone of polynomial operations and the clone of congruence preserving operations. All clones in this interval are known and described by means of generators. In this paper, we characterize each of these clones by the property of preserving a small set of relations. These relations turn out to be in a close connection to commutators. (English)
Keyword: congruence
Keyword: clone
Keyword: polynomial
MSC: 03B50
MSC: 08A40
idZBL: Zbl 07790601
idMR: MR4673835
DOI: 10.21136/MB.2022.0155-21
.
Date available: 2023-11-23T12:37:22Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151972
.
Reference: [1] Aichinger, E., Mayr, P.: Polynomial clones on groups of order $pq$.Acta Math. Hung. 114 (2007), 267-285. Zbl 1121.08004, MR 2296547, 10.1007/s10474-006-0530-x
Reference: [2] Aichinger, E., Mudrinski, N.: Some applications of higher commutators in Mal'cev algebras.Algebra Univers. 63 (2010), 367-403. Zbl 1206.08003, MR 2734303, 10.1007/s00012-010-0084-1
Reference: [3] Bulatov, A. A.: Polynomial reducts of modules I. Rough classification.Mult.-Valued Log. 3 (1998), 135-154. Zbl 0909.08003, MR 1447082
Reference: [4] Bulatov, A. A.: Polynomial reducts of modules II. Algebras of primitive and nilpotent functions.Mult.-Valued Log. 3 (1998), 173-193. Zbl 0923.08002, MR 1447082
Reference: [5] Bulatov, A. A.: On the number of finite Mal'tsev algebras.Contributions to General Algebra 13 Johannes Heyn, Klagenfurt (2001), 41-54. Zbl 0986.08003, MR 1854568
Reference: [6] Bulatov, A. A.: Polynomial clones containing the Mal'tsev operation of the groups $\Bbb{Z}_{p^2}$ and $\Bbb{Z}_p \times \Bbb{Z}_p$.Mult.-Valued Log. 8 (2002), 193-221. Zbl 1022.08001, MR 1957653, 10.1080/10236620215291
Reference: [7] Freese, R., McKenzie, R.: Commutator Theory for Congruence Modular Varieties.London Mathematical Society Lecture Note Series 125. Cambridge University Press, Cambridge (1987). Zbl 0636.08001, MR 0909290
Reference: [8] Gavala, C.: Compatible Operations on Rings of Integers Modulo $n$: Master Thesis.Šafárik University Košice, Košice (2016), Slovak.
Reference: [9] Gavrilov, G. P.: On the superstructure of the class of polynomials in multivalued logics.Discrete Math. Appl. 6 (1996), 405-412 translation from Diskretn. Mat. 8 1996 90-97. Zbl 0863.03010, MR 1422350, 10.1515/dma.1996.6.4.405
Reference: [10] Gavrilov, G. P.: On the closed classes of multivalued logic containing the polynomial class.Discrete Math. Appl. 7 (1997), 231-242 translation from Diskretn. Mat. 9 1997 12-23. Zbl 0965.03029, MR 1468067, 10.1515/dma.1997.7.3.231
Reference: [11] Idziak, P. M.: Clones containing Mal'tsev operations.Int. J. Algebra Comput. 9 (1999), 213-226. Zbl 1023.08003, MR 1703074, 10.1142/S021819679900014X
Reference: [12] Mayr, P.: Polynomial clones on squarefree groups.Int. J. Algebra Comput. 18 (2008), 759-777. Zbl 1147.08003, MR 2428154, 10.1142/S0218196708004597
Reference: [13] Meshchaninov, D. G.: Superstructures of the class of polynomials in $P_k$.Math. Notes 44 (1988), 850-854 translation from Mat. Zametki 44 1988 673-681. Zbl 0669.03012, MR 0980588, 10.1007/BF01158427
Reference: [14] Opršal, J.: A relational description of higher commutators in Mal'cev varieties.Algebra Univers. 76 (2016), 367-383. Zbl 1357.08002, MR 3556818, 10.1007/s00012-016-0391-2
Reference: [15] Ploščica, M., Varga, I.: Clones of compatible operations on rings $\Bbb{Z}_{p^k}$.J. Mult.-Val. Log. Soft Comput. 36 (2021), 391-404. Zbl 07536110, MR 4578809
Reference: [16] Remizov, A. B.: Superstructure of the closed class of polynomials modulo $k$.Discrete Math. Appl. 1 (1991), 9-22 translation from Diskretn. Mat. 1 1989 3-15. Zbl 0726.03014, MR 1072635, 10.1515/dma.1991.1.1.9
Reference: [17] Salomaa, A.: On infinitely generated sets of operations in finite algebras.Ann. Univ. Turku., Ser. A I 74 (1964), 13 pages. Zbl 0123.00503, MR 0169781
Reference: [18] Shaw, J.: Commutator relations and the clones of finite groups.Algebra Univers. 72 (2014), 29-52. Zbl 1309.08003, MR 3229950, 10.1007/s00012-014-0287-y
Reference: [19] Szendrei, Á.: Idempotent reducts of abelian groups.Acta Sci. Math. 38 (1976), 171-182. Zbl 0307.20032, MR 0422118
Reference: [20] Szendrei, Á.: Clones of linear operations on finite sets.Finite Algebra and Multiple-Valued Logic Colloquia Mathematica Societatis János Bolyai 28. North-Holland, Amsterdam (1981), 693-738. Zbl 0487.08002, MR 0648640
.

Files

Files Size Format View
MathBohem_148-2023-4_7.pdf 294.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo