Previous |  Up |  Next

Article

Title: Characterization of irreducible polynomials over a special principal ideal ring (English)
Author: Boudine, Brahim
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 4
Year: 2023
Pages: 501-506
Summary lang: English
.
Category: math
.
Summary: A commutative ring $R$ with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length $e$ is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length $2$. Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length $e$. (English)
Keyword: polynomial
Keyword: irreducibility
Keyword: commutative principal ideal ring
MSC: 13B25
MSC: 13F20
idZBL: Zbl 07790599
idMR: MR4673833
DOI: 10.21136/MB.2022.0187-21
.
Date available: 2023-11-23T12:35:58Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151970
.
Reference: [1] Azumaya, G.: On maximally central algebras.Nagoya Math. J. 2 (1951), 119-150. Zbl 0045.01103, MR 0040287, 10.1017/S0027763000010114
Reference: [2] Berlekamp, E. R.: Algebraic Coding Theory.McGraw-Hill, New York (1968). Zbl 0988.94521, MR 0238597, 10.1142/9407
Reference: [3] Brown, W. C.: Matrices Over Commutative Rings.Pure and Applied Mathematics 169. Marcel Dekker, New York (1993). Zbl 0782.15001, MR 1200234
Reference: [4] Charkani, M. E., Boudine, B.: On the integral ideals of $R [X]$ when $R$ is a special principal ideal ring.São Paulo J. Math. Sci. 14 (2020), 698-702. Zbl 1451.13028, MR 4173484, 10.1007/s40863-020-00177-1
Reference: [5] Chor, B., Rivest, R. L.: A knapsack-type public key cryptosystem based on arithmetic in finite fields.IEEE Trans. Inf. Theory 34 (1988), 901-909. Zbl 0664.94011, MR 0982801, 10.1109/18.21214
Reference: [6] Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry.Graduate Texts in Mathematics 150. Springer, Berlin 1995. Zbl 0819.13001, MR 1322960, 10.1007/978-1-4612-5350-1
Reference: [7] Hachenberger, D., Jungnickel, D.: Irreducible polynomials over finite fields.Topics in Galois Fields Algorithms and Computation in Mathematics 29. Springer, Cham (2020), 197-239. MR 4233161, 10.1007/978-3-030-60806-4_5
Reference: [8] Rabin, M. O.: Probabilistic algorithms in finite fields.SIAM J. Comput. 9 (1980), 273-280. Zbl 0461.12012, MR 0568814, 10.1137/0209024
Reference: [9] Rotthaus, C.: Excellent rings, Henselian rings and the approximation property.Rocky Mt. J. Math. 27 (1997), 317-334. Zbl 0881.13009, MR 1453106, 10.1216/rmjm/1181071964
.

Files

Files Size Format View
MathBohem_148-2023-4_5.pdf 180.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo