Previous |  Up |  Next

Article

Title: On pairs of Goldbach-Linnik equations with unequal powers of primes (English)
Author: Huang, Enxun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1219-1228
Summary lang: English
.
Category: math
.
Summary: It is proved that every pair of sufficiently large odd integers can be represented by a pair of equations, each containing two squares of primes, two cubes of primes, two fourth powers of primes and 105 powers of 2. (English)
Keyword: Goldbach-Waring-Linnik problem
Keyword: circle method
Keyword: powers of 2
MSC: 11P05
MSC: 11P32
MSC: 11P55
idZBL: Zbl 07790570
DOI: 10.21136/CMJ.2023.0470-22
.
Date available: 2023-11-23T12:26:36Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151956
.
Reference: [1] Heath-Brown, D. R., Puchta, J.-C.: Integers represented as a sum of primes and powers of two.Asian J. Math. 6 (2002), 535-565. Zbl 1097.11050, MR 1946346, 10.4310/AJM.2002.v6.n3.a7
Reference: [2] Kong, Y.: On pairs of linear equations in four prime variables and powers of two.Bull. Aust. Math. Soc. 87 (2013), 55-67. Zbl 1266.11110, MR 3011941, 10.1017/S0004972712000172
Reference: [3] Kong, Y., Liu, Z.: On pairs of Goldbach-Linnik equations.Bull. Aust. Math. Soc. 95 (2017), 199-208. Zbl 1381.11098, MR 3614942, 10.1017/S000497271600071X
Reference: [4] Kumchev, A. V.: On Weyl sums over primes and almost primes.Mich. Math. J. 54 (2006), 243-268. Zbl 1137.11054, MR 2252758, 10.1307/mmj/1156345592
Reference: [5] Languasco, A., Zaccagnini, A.: On a Diophantine problem with two primes and $s$ powers of two.Acta Arith. 145 (2010), 193-208. Zbl 1222.11049, MR 2733083, 10.4064/aa145-2-7
Reference: [6] Linnik, Y. V.: Prime numbers and powers of two.Tr. Mat. Inst. Steklova 38 (1951), 152-169 Russian. Zbl 0049.31402, MR 0050618
Reference: [7] Linnik, Y. V.: Addition of prime numbers with powers of one and the same number.Mat. Sb., N. Ser. 32 (1953), 3-60 Russian. Zbl 0051.03402, MR 0059938
Reference: [8] Liu, J.: Enlarged major arcs in additive problems. II.Proc. Steklov Inst. Math. 276 (2012), 176-192. Zbl 1297.11130, MR 2986119, 10.1134/S0081543812010154
Reference: [9] Liu, Z.: Goldbach-Linnik type problems with unequal powers of primes.J. Number Theory 176 (2017), 439-448. Zbl 1422.11207, MR 3622138, 10.1016/j.jnt.2016.12.009
Reference: [10] Liu, J., Liu, M.-C., Wang, T.: On the almost Goldbach problem of Linnik.J. Théor. Nombres Bordx. 11 (1999), 133-147. Zbl 0979.11051, MR 1730436, 10.5802/jtnb.242
Reference: [11] Lü, X.: On unequal powers of primes and powers of 2.Ramanujan J. 50 (2019), 111-121. Zbl 1472.11269, MR 4008100, 10.1007/s11139-018-0128-2
Reference: [12] Pintz, J., Ruzsa, I. Z.: On Linnik's approximation to Goldbach's problem. I.Acta. Arith. 109 (2003), 169-194. Zbl 1031.11060, MR 1980645, 10.4064/aa109-2-6
Reference: [13] Zhao, L.: On the Waring-Goldbach problem for fourth and sixth powers.Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. Zbl 1370.11116, MR 3218320, 10.1112/plms/pdt072
Reference: [14] Zhao, X.: Goldbach-Linnik type problems on cubes of primes.Ramanujan J. 57 (2022), 239-251. Zbl 1498.11203, MR 4360484, 10.1007/s11139-020-00303-9
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo