Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Toeplitz operator; Bergman space
Summary:
A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.
References:
[1] Chen, Y., Izuchi, K. J., Lee, Y. J.: A Coburn type theorem on the Hardy space of the bidisk. J. Math. Anal. Appl. 466 (2018), 1043-1059. DOI 10.1016/j.jmaa.2018.06.034 | MR 3818158 | Zbl 06897108
[2] Choe, B. R., Lee, Y. J.: Commuting Toeplitz operators on the harmonic Bergman space. Mich. Math. J. 46 (1999), 163-174. DOI 10.1307/mmj/1030132367 | MR 1682896 | Zbl 0969.47023
[3] Coburn, L. A.: Weyl's theorem for nonnormal operators. Mich. Math. J. 13 (1966), 285-288. DOI 10.1307/mmj/1031732778 | MR 0201969 | Zbl 0173.42904
[4] Guo, K., Zhao, X., Zheng, D.: The spectral picture of Bergman Toeplitz operators with harmonic polynomial symbols. Available at https://arxiv.org/abs/2007.07532 (2023), 21 pages. MR 4666991
[5] Lee, Y. J.: A Coburn type theorem for Toeplitz operators on the Dirichlet space. J. Math. Anal. Appl. 414 (2014), 237-242. DOI 10.1016/j.jmaa.2014.01.020 | MR 3165305 | Zbl 1308.47037
[6] McDonald, G., Sundberg, C.: Toeplitz operators on the disc. Indiana Univ. Math. J. 28 (1979), 595-611. DOI 10.1512/iumj.1979.28.28042 | MR 0542947 | Zbl 0439.47022
[7] Perälä, A., Virtanen, J. A.: A note on the Fredholm properties of Toeplitz operators on weighted Bergman spaces with matrix-valued symbols. Oper. Matrices 5 (2011), 97-106. DOI 10.7153/oam-05-06 | MR 2798798 | Zbl 1262.47046
[8] Sundberg, C., Zheng, D.: The spectrum and essential spectrum of Toeplitz operators with harmonic symbols. Indiana Univ. Math. J. 59 (2010), 385-394. DOI 10.1512/iumj.2010.59.3799 | MR 2666483 | Zbl 1195.47019
[9] Vukotić, D.: A note on the range of Toeplitz operators. Integr. Equations Oper. Theory 50 (2004), 565-567. DOI 10.1007/s00020-004-1312-x | MR 2105965 | Zbl 1062.47034
[10] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138. AMS, Providence (2007). DOI 10.1090/surv/138 | MR 2311536 | Zbl 1123.47001
Partner of
EuDML logo