Previous |  Up |  Next

Article

Title: Commutative rings whose certain modules decompose into direct sums of cyclic submodules (English)
Author: Kourki, Farid
Author: Tribak, Rachid
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1099-1117
Summary lang: English
.
Category: math
.
Summary: We provide some characterizations of rings $R$ for which every (finitely generated) module belonging to a class $\mathcal {C}$ of $R$-modules is a direct sum of cyclic submodules. We focus on the cases, where the class $\mathcal {C}$ is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules. (English)
Keyword: decomposition of a module
Keyword: FGC-ring
Keyword: Köthe ring
Keyword: semiartinian module
Keyword: \hbox {(semi-)V-module}
Keyword: locally supplemented module
MSC: 13C05
MSC: 13C13
MSC: 16D10
MSC: 16D80
idZBL: Zbl 07790563
DOI: 10.21136/CMJ.2023.0392-22
.
Date available: 2023-11-23T12:22:25Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151949
.
Reference: [1] Albu, T., Wisbauer, R.: Kasch modules.Advances in Ring Theory Trends in Mathematics. Birkhäuser, Boston (1997), 1-16. Zbl 0885.16004, MR 1602688, 10.1007/978-1-4612-1978-1_1
Reference: [2] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics 13. Springer, New York (1974). Zbl 0301.16001, MR 0417223, 10.1007/978-1-4612-4418-9
Reference: [3] Baccella, G.: Semiartinian $V$-rings and semiartinian von Neumann regular rings.J. Algebra 173 (1995), 587-612. Zbl 0829.16007, MR 1327870, 10.1006/jabr.1995.1104
Reference: [4] Brandal, W.: Commutative Rings whose Finitely Generated Modules Decompose.Lecture Notes in Mathematics 723. Springer, New York (1979). Zbl 0426.13004, MR 0539854, 10.1007/BFb0069021
Reference: [5] Camillo, V., Yousif, M. F.: Semi-$V$-modules.Commun. Algebra 17 (1989), 165-177. Zbl 0658.16020, MR 0970870, 10.1080/00927878908823720
Reference: [6] Cheatham, T. J., Smith, J. R.: Regular and semisimple modules.Pac. J. Math. 65 (1976), 315-323. Zbl 0326.16011, MR 0422348, 10.2140/pjm.1976.65.315
Reference: [7] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory.Frontiers in Mathematics. Birkhäuser, Basel (2006). Zbl 1102.16001, MR 2253001, 10.1007/3-7643-7573-6
Reference: [8] Cohen, I. S.: Commutative rings with resticted minimum condition.Duke Math. J. 17 (1950), 27-42. Zbl 0041.36408, MR 0033276, 10.1215/S0012-7094-50-01704-2
Reference: [9] Cohen, I. S., Kaplansky, I.: Rings for which every module is a direct sum of cyclic modules.Math. Z. 54 (1951), 97-101. Zbl 0043.26702, MR 0043073, 10.1007/BF01179851
Reference: [10] Couchot, F.: Indecomposable modules and Gelfand rings.Commun. Algebra 35 (2007), 231-241. Zbl 1107.13012, MR 2287564, 10.1080/00927870601041615
Reference: [11] Dickson, S. E.: Decomposition of modules. II: Rings whithout chain conditions.Math. Z. 104 (1968), 349-357. Zbl 0164.34703, MR 0229678, 10.1007/BF01110426
Reference: [12] Facchini, A.: Rings whose finitely generated torsion modules in the sense of Dickson decompose into direct sums of cyclic submodules.Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 68 (1980), 13-21. Zbl 0469.13005, MR 0625910
Reference: [13] Facchini, A.: Loewy and Artinian modules over commutative rings.Ann. Mat. Pura Appl., IV. Ser. 128 (1981), 359-374. Zbl 0488.13014, MR 0640791, 10.1007/BF01789482
Reference: [14] Faith, C.: Locally perfect commutative rings are those whose modules have maximal submodules.Commun. Algebra 23 (1995), 4885-4886. Zbl 0840.13006, MR 1356108, 10.1080/00927879508825506
Reference: [15] Fuller, K. R.: Relative projectivity and injectivity classes determined by simple modules.J. Lond. Math. Soc., II. Ser. 5 (1972), 423-431. Zbl 0253.16018, MR 0325686, 10.1112/jlms/s2-5.3.423
Reference: [16] Gill, D. T.: Almost maximal valuation rings.J. Lond. Math. Soc., II. Ser. 4 (1971), 140-146. Zbl 0219.13016, MR 0292822, 10.1112/jlms/s2-4.1.140
Reference: [17] Gilmer, R.: Commutative rings in which each prime ideal is principal.Math. Ann. 183 (1969), 151-158. Zbl 0169.05402, MR 0248123, 10.1007/BF01350233
Reference: [18] Gordon, R., Robson, J. C.: Krull Dimension.Memoirs of the American Mathematical Society 133. AMS, Providence (1973). Zbl 0269.16017, MR 0352177, 10.1090/memo/0133
Reference: [19] Hirano, Y.: Regular modules and $V$-modules.Hiroshima Math. J. 11 (1981), 125-142. Zbl 0459.16009, MR 0606838, 10.32917/hmj/1206134222
Reference: [20] Kaplansky, I.: Modules over Dedekind rings and valuation rings.Trans. Am. Math. Soc. 72 (1952), 327-340. Zbl 0046.25701, MR 0046349, 10.1090/S0002-9947-1952-0046349-0
Reference: [21] Köthe, G.: Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring.Math. Z. 39 (1935), 31-44 German. Zbl 0010.01102, MR 1545487, 10.1007/BF01201343
Reference: [22] Kourki, F., Tribak, R.: On semiartinian and $\Pi$-semiartinian modules.Palest. J. Math. 7 (2018), 99-107. Zbl 1411.13008, MR 3847599
Reference: [23] Kourki, F., Tribak, R.: Characterizations of some classes of rings via locally supplemented modules.Int. Electron. J. Algebra 27 (2020), 178-193. Zbl 1430.13013, MR 4056427, 10.24330/ieja.663060
Reference: [24] Kourki, F., Tribak, R.: On modules satisfying the descending chain condition on cyclic submodules.Algebra Colloq. 27 (2020), 531-544. Zbl 1456.13016, MR 4141630, 10.1142/S1005386720000449
Reference: [25] Kourki, F., Tribak, R.: On Bass modules and semi-$V$-modules.Bull. Belg. Math. Soc. - Simon Stevin 28 (2021), 275-294. Zbl 1481.13022, MR 4355688, 10.36045/j.bbms.200928
Reference: [26] Lafon, J.-P.: Anneaux locaux commutatifs sur lesquels tout module de type fini est somme directe de modules monogènes.J. Algebra 17 (1971), 575-591 French. Zbl 0215.37001, MR 0282968, 10.1016/0021-8693(71)90010-X
Reference: [27] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189. Springer, New York (1999). Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8
Reference: [28] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics 131. Springer, New York (2001). Zbl 0980.16001, MR 1838439, 10.1007/978-1-4419-8616-0
Reference: [29] Matlis, E.: Decomposable modules.Trans. Am. Math. Soc. 125 (1966), 147-179. Zbl 0144.03001, MR 0201465, 10.1090/S0002-9947-1966-0201465-5
Reference: [30] Penk, T., Žemlička, J.: Commutative tall rings.J. Algebra Appl. 13 (2014), Article ID 1350129, 11 pages. Zbl 1309.13026, MR 3153864, 10.1142/S0219498813501296
Reference: [31] Pierce, R. S.: Modules over Commutative Regular Rings.Memoirs of the American Mathematical Society 70. AMS, Providence (1967). Zbl 0152.02601, MR 0217056, 10.1090/memo/0070
Reference: [32] Sarath, B.: Krull dimension and Noetherianness.Ill. J. Math. 20 (1976), 329-335. Zbl 0323.16008, MR 0399158, 10.1215/ijm/1256049903
Reference: [33] Sharpe, D. W., Vámos, P.: Injective Modules.Cambridge Tracts in Mathematics and mathematical Physics 62. Cambridge University Press, Cambridge (1972). Zbl 0245.13001, MR 0360706
Reference: [34] Shores, T. S.: Decompositions of finitely generated modules.Proc. Am. Math. Soc. 30 (1971), 445-450. Zbl 0203.05002, MR 0281708, 10.1090/S0002-9939-1971-0281708-X
Reference: [35] Uzkov, A. I.: On the decomposition of modules over a commutative ring into direct sums of cyclic submodules.Mat. Sb., N. Ser. 62 (104) (1963), 469-475 Russian. Zbl 0122.29003, MR 0157986
Reference: [36] Vámos, P.: The dual notion of "finitely generated".J. Lond. Math. Soc. 43 (1968), 643-646. Zbl 0164.04003, MR 0248171, 10.1112/jlms/s1-43.1.643
Reference: [37] R. B. Warfield, Jr.: Decomposability of finitely presented modules.Proc. Am. Math. Soc. 25 (1970), 167-172. Zbl 0204.05902, MR 0254030, 10.1090/S0002-9939-1970-0254030-4
Reference: [38] Wisbauer, R.: Foundations of Module and Ring Theory: A Handbook for Study and Research.Algebra, Logic and Applications 3. Gordon and Breach Science Publishers, Philadelphia (1991). Zbl 0746.16001, MR 1144522, 10.1201/9780203755532
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo