Title: | Commutative rings whose certain modules decompose into direct sums of cyclic submodules (English) |
Author: | Kourki, Farid |
Author: | Tribak, Rachid |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 4 |
Year: | 2023 |
Pages: | 1099-1117 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We provide some characterizations of rings $R$ for which every (finitely generated) module belonging to a class $\mathcal {C}$ of $R$-modules is a direct sum of cyclic submodules. We focus on the cases, where the class $\mathcal {C}$ is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules. (English) |
Keyword: | decomposition of a module |
Keyword: | FGC-ring |
Keyword: | Köthe ring |
Keyword: | semiartinian module |
Keyword: | \hbox {(semi-)V-module} |
Keyword: | locally supplemented module |
MSC: | 13C05 |
MSC: | 13C13 |
MSC: | 16D10 |
MSC: | 16D80 |
idZBL: | Zbl 07790563 |
DOI: | 10.21136/CMJ.2023.0392-22 |
. | |
Date available: | 2023-11-23T12:22:25Z |
Last updated: | 2024-12-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151949 |
. | |
Reference: | [1] Albu, T., Wisbauer, R.: Kasch modules.Advances in Ring Theory Trends in Mathematics. Birkhäuser, Boston (1997), 1-16. Zbl 0885.16004, MR 1602688, 10.1007/978-1-4612-1978-1_1 |
Reference: | [2] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics 13. Springer, New York (1974). Zbl 0301.16001, MR 0417223, 10.1007/978-1-4612-4418-9 |
Reference: | [3] Baccella, G.: Semiartinian $V$-rings and semiartinian von Neumann regular rings.J. Algebra 173 (1995), 587-612. Zbl 0829.16007, MR 1327870, 10.1006/jabr.1995.1104 |
Reference: | [4] Brandal, W.: Commutative Rings whose Finitely Generated Modules Decompose.Lecture Notes in Mathematics 723. Springer, New York (1979). Zbl 0426.13004, MR 0539854, 10.1007/BFb0069021 |
Reference: | [5] Camillo, V., Yousif, M. F.: Semi-$V$-modules.Commun. Algebra 17 (1989), 165-177. Zbl 0658.16020, MR 0970870, 10.1080/00927878908823720 |
Reference: | [6] Cheatham, T. J., Smith, J. R.: Regular and semisimple modules.Pac. J. Math. 65 (1976), 315-323. Zbl 0326.16011, MR 0422348, 10.2140/pjm.1976.65.315 |
Reference: | [7] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory.Frontiers in Mathematics. Birkhäuser, Basel (2006). Zbl 1102.16001, MR 2253001, 10.1007/3-7643-7573-6 |
Reference: | [8] Cohen, I. S.: Commutative rings with resticted minimum condition.Duke Math. J. 17 (1950), 27-42. Zbl 0041.36408, MR 0033276, 10.1215/S0012-7094-50-01704-2 |
Reference: | [9] Cohen, I. S., Kaplansky, I.: Rings for which every module is a direct sum of cyclic modules.Math. Z. 54 (1951), 97-101. Zbl 0043.26702, MR 0043073, 10.1007/BF01179851 |
Reference: | [10] Couchot, F.: Indecomposable modules and Gelfand rings.Commun. Algebra 35 (2007), 231-241. Zbl 1107.13012, MR 2287564, 10.1080/00927870601041615 |
Reference: | [11] Dickson, S. E.: Decomposition of modules. II: Rings whithout chain conditions.Math. Z. 104 (1968), 349-357. Zbl 0164.34703, MR 0229678, 10.1007/BF01110426 |
Reference: | [12] Facchini, A.: Rings whose finitely generated torsion modules in the sense of Dickson decompose into direct sums of cyclic submodules.Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 68 (1980), 13-21. Zbl 0469.13005, MR 0625910 |
Reference: | [13] Facchini, A.: Loewy and Artinian modules over commutative rings.Ann. Mat. Pura Appl., IV. Ser. 128 (1981), 359-374. Zbl 0488.13014, MR 0640791, 10.1007/BF01789482 |
Reference: | [14] Faith, C.: Locally perfect commutative rings are those whose modules have maximal submodules.Commun. Algebra 23 (1995), 4885-4886. Zbl 0840.13006, MR 1356108, 10.1080/00927879508825506 |
Reference: | [15] Fuller, K. R.: Relative projectivity and injectivity classes determined by simple modules.J. Lond. Math. Soc., II. Ser. 5 (1972), 423-431. Zbl 0253.16018, MR 0325686, 10.1112/jlms/s2-5.3.423 |
Reference: | [16] Gill, D. T.: Almost maximal valuation rings.J. Lond. Math. Soc., II. Ser. 4 (1971), 140-146. Zbl 0219.13016, MR 0292822, 10.1112/jlms/s2-4.1.140 |
Reference: | [17] Gilmer, R.: Commutative rings in which each prime ideal is principal.Math. Ann. 183 (1969), 151-158. Zbl 0169.05402, MR 0248123, 10.1007/BF01350233 |
Reference: | [18] Gordon, R., Robson, J. C.: Krull Dimension.Memoirs of the American Mathematical Society 133. AMS, Providence (1973). Zbl 0269.16017, MR 0352177, 10.1090/memo/0133 |
Reference: | [19] Hirano, Y.: Regular modules and $V$-modules.Hiroshima Math. J. 11 (1981), 125-142. Zbl 0459.16009, MR 0606838, 10.32917/hmj/1206134222 |
Reference: | [20] Kaplansky, I.: Modules over Dedekind rings and valuation rings.Trans. Am. Math. Soc. 72 (1952), 327-340. Zbl 0046.25701, MR 0046349, 10.1090/S0002-9947-1952-0046349-0 |
Reference: | [21] Köthe, G.: Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring.Math. Z. 39 (1935), 31-44 German. Zbl 0010.01102, MR 1545487, 10.1007/BF01201343 |
Reference: | [22] Kourki, F., Tribak, R.: On semiartinian and $\Pi$-semiartinian modules.Palest. J. Math. 7 (2018), 99-107. Zbl 1411.13008, MR 3847599 |
Reference: | [23] Kourki, F., Tribak, R.: Characterizations of some classes of rings via locally supplemented modules.Int. Electron. J. Algebra 27 (2020), 178-193. Zbl 1430.13013, MR 4056427, 10.24330/ieja.663060 |
Reference: | [24] Kourki, F., Tribak, R.: On modules satisfying the descending chain condition on cyclic submodules.Algebra Colloq. 27 (2020), 531-544. Zbl 1456.13016, MR 4141630, 10.1142/S1005386720000449 |
Reference: | [25] Kourki, F., Tribak, R.: On Bass modules and semi-$V$-modules.Bull. Belg. Math. Soc. - Simon Stevin 28 (2021), 275-294. Zbl 1481.13022, MR 4355688, 10.36045/j.bbms.200928 |
Reference: | [26] Lafon, J.-P.: Anneaux locaux commutatifs sur lesquels tout module de type fini est somme directe de modules monogènes.J. Algebra 17 (1971), 575-591 French. Zbl 0215.37001, MR 0282968, 10.1016/0021-8693(71)90010-X |
Reference: | [27] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189. Springer, New York (1999). Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8 |
Reference: | [28] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics 131. Springer, New York (2001). Zbl 0980.16001, MR 1838439, 10.1007/978-1-4419-8616-0 |
Reference: | [29] Matlis, E.: Decomposable modules.Trans. Am. Math. Soc. 125 (1966), 147-179. Zbl 0144.03001, MR 0201465, 10.1090/S0002-9947-1966-0201465-5 |
Reference: | [30] Penk, T., Žemlička, J.: Commutative tall rings.J. Algebra Appl. 13 (2014), Article ID 1350129, 11 pages. Zbl 1309.13026, MR 3153864, 10.1142/S0219498813501296 |
Reference: | [31] Pierce, R. S.: Modules over Commutative Regular Rings.Memoirs of the American Mathematical Society 70. AMS, Providence (1967). Zbl 0152.02601, MR 0217056, 10.1090/memo/0070 |
Reference: | [32] Sarath, B.: Krull dimension and Noetherianness.Ill. J. Math. 20 (1976), 329-335. Zbl 0323.16008, MR 0399158, 10.1215/ijm/1256049903 |
Reference: | [33] Sharpe, D. W., Vámos, P.: Injective Modules.Cambridge Tracts in Mathematics and mathematical Physics 62. Cambridge University Press, Cambridge (1972). Zbl 0245.13001, MR 0360706 |
Reference: | [34] Shores, T. S.: Decompositions of finitely generated modules.Proc. Am. Math. Soc. 30 (1971), 445-450. Zbl 0203.05002, MR 0281708, 10.1090/S0002-9939-1971-0281708-X |
Reference: | [35] Uzkov, A. I.: On the decomposition of modules over a commutative ring into direct sums of cyclic submodules.Mat. Sb., N. Ser. 62 (104) (1963), 469-475 Russian. Zbl 0122.29003, MR 0157986 |
Reference: | [36] Vámos, P.: The dual notion of "finitely generated".J. Lond. Math. Soc. 43 (1968), 643-646. Zbl 0164.04003, MR 0248171, 10.1112/jlms/s1-43.1.643 |
Reference: | [37] R. B. Warfield, Jr.: Decomposability of finitely presented modules.Proc. Am. Math. Soc. 25 (1970), 167-172. Zbl 0204.05902, MR 0254030, 10.1090/S0002-9939-1970-0254030-4 |
Reference: | [38] Wisbauer, R.: Foundations of Module and Ring Theory: A Handbook for Study and Research.Algebra, Logic and Applications 3. Gordon and Breach Science Publishers, Philadelphia (1991). Zbl 0746.16001, MR 1144522, 10.1201/9780203755532 |
. |
Fulltext not available (moving wall 24 months)