Previous |  Up |  Next

Article

Title: Practical $h$-stability behavior of time-varying nonlinear systems (English)
Author: Kicha, Abir
Author: Damak, Hanen
Author: Hammami, Mohamed Ali
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 2
Year: 2023
Pages: 209-226
Summary lang: English
.
Category: math
.
Summary: We deal with the problem of practical uniform $h$-stability for nonlinear time-varying perturbed differential equations. The main aim is to give sufficient conditions on the linear and perturbed terms to guarantee the global existence and the practical uniform $h$-stability of the solutions based on Gronwall's type integral inequalities. Several numerical examples and an application to control systems with simulations are presented to illustrate the applicability of the obtained results. (English)
Keyword: Gronwall's inequality
Keyword: perturbed system
Keyword: practical $h$-stability
MSC: 34A30
MSC: 34A34
MSC: 34D10
idZBL: Zbl 07790592
idMR: MR4659000
DOI: 10.14712/1213-7243.2023.021
.
Date available: 2023-12-13T13:40:53Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151860
.
Reference: [1] Aeyels D., Peuteman J.: A new asymptotic stability criterion for nonlinear time-varying differential equations.IEEE Trans. Automat. Control 43 (1998), no. 7, 968–971. MR 1633504, 10.1109/9.701102
Reference: [2] Bay N. S., Phat V. N.: Stability of nonlinear difference time-varying systems with delays.Vietnam J. Math. 4 (1999), 129–136. MR 1810578
Reference: [3] Bellman R.: Stability Theory of Differential Equations.McGraw-Hill Book Co., New York, 1953. MR 0061235
Reference: [4] Ben Hamed B.: On the robust practical global stability of nonlinear time-varying system.Mediterr. J. Math. 10 (2013), no. 3, 1591–1608. MR 3080228, 10.1007/s00009-012-0227-z
Reference: [5] Ben Hamed B., Ellouze I., Hammami M. A.: Practical uniform stability of nonlinear differential delay equations.Mediterr. J. Math. 8 (2011), no. 4, 603–616. MR 2860688, 10.1007/s00009-010-0083-7
Reference: [6] Ben Hamed B., Haj Salem Z., Hammami M. A.: Stability of nonlinear time-varying perturbed differential equations.Nonlinear Dynam. 73 (2013), no. 3, 1353–1365. MR 3083786, 10.1007/s11071-013-0868-x
Reference: [7] Ben Makhlouf A., Hammami M. A.: A nonlinear inequality and application to global asymptotic stability of perturbed systems.Math. Methods Appl. Sci. 38 (2015), no. 12, 2496–2505. MR 3372295, 10.1002/mma.3236
Reference: [8] Damak H.: On the practical output $h$-stabilization of nonlinear uncertain systems.J. Appl. Nonlinear Dyn. 10 (2021), no. 4, 659–669. MR 4292264, 10.5890/JAND.2021.12.006
Reference: [9] Damak H., Hadj Taieb N., Hammami M. A.: A practical separation principle for nonlinear non-autonomous systems.Internat. J. Control 96 (2023), no. 1, 214–222. MR 4532849, 10.1080/00207179.2021.1986640
Reference: [10] Damak H., Hammami M. A., Kalitine B.: On the global uniform asymptotic stability of time-varying systems.Differ. Equ. Dyn. Syst. 22 (2014), no. 2, 113–124. MR 3183099, 10.1007/s12591-012-0157-z
Reference: [11] Damak H., Hammami M. A., Kicha A.: A converse theorem for practical $h$-stability of time-varying nonlinear systems.New Zealand J. Math. 50 (2020), 109–123. MR 4216440, 10.53733/79
Reference: [12] Damak H., Hammami M. A., Kicha A.: A converse theorem on practical $h$-stability of nonlinear systems.Mediterr. J. Math. 17 (2020), no. 3, Paper No. 88, 18 pages. MR 4100040, 10.1007/s00009-020-01518-2
Reference: [13] Damak H., Hammami M. A., Kicha A.: Growth conditions for asymptotic behavior of solutions for certain time-varying differential equations.Differ. Uravn. Protsessy. Upr. (2021), no. 1, 423–447. MR 4241341
Reference: [14] Damak H., Hammami M. A., Kicha A.: On the practical $h$-stabilization of nonlinear time-varying systems: application to separately excited DC motor.COMPEL-Int. J. Comput. Math. Electr. Electron Eng. 40 (2021), no. 4, 888–904. 10.1108/COMPEL-05-2020-0178
Reference: [15] Dragomir S. S.: Some Gronwall Type Inequalities and Applications.School of Communications and Informatics, Victoria University of Technology, Melbourne City, 2002. MR 2016992
Reference: [16] Ellouze I., Hammami M. A.: Practical stability of impulsive control systems with multiple time delays.Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 3, 341–356. MR 3098457
Reference: [17] Ghanmi B.: On the practical $h$-stability of nonlinear systems of differential equations.J. Dyn. Control Syst. 25 (2019), no. 4, 691–713. MR 3995960, 10.1007/s10883-019-09454-5
Reference: [18] Hammi M., Hammami M. A.: Gronwall–Bellman type integral inequalities and applications to global uniform asymptotic stability.Cubo 17 (2015), no. 3, 53–70. MR 3445845, 10.4067/S0719-06462015000300004
Reference: [19] Khalil H. K.: Nonlinear Systems.Prentice-Hall, New York, 2002. Zbl 1140.93456, MR 1201326
Reference: [20] Medina R.: Perturbations of nonlinear systems of difference equations.J. Math. Anal. Appl. 204 (1996), no. 2, 545–553. MR 1421464, 10.1006/jmaa.1996.0453
Reference: [21] Pinto M.: Perturbations of asymptotically stable differential systems.Analysis 4 (1984), no. 1–2, 161–175. MR 0775553, 10.1524/anly.1984.4.12.161
Reference: [22] Pinto M.: Stability of nonlinear differential systems.Appl. Anal. 43 (1992), no. 1–2, 1–20. MR 1284758, 10.1080/00036819208840049
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo