[1] Badri, P., Sojoodi, M.:
LMI-based robust stability and stabilization analysis of fractional-order interval systems with time-varying delay. Int. J. General Systems 51 (2022), 1, 1-26.
DOI |
MR 4394603
[2] Chen, Y., Fei, S., Li, Y.:
Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback. Automatica 52 (2015), 242-247.
DOI |
MR 3310836
[3] Dastaviz, A., Binazadeh, T.:
Simultaneous stabilization for a collection of uncertain time-delay systems using sliding-mode output feedback control. In. J. Control 93 (2020), 9, 2135-2144.
DOI |
MR 4134401
[4] Dey, R., Ghosh, S., Gyurkovics, E., Ray, G.:
Delay-interval-dependent stability criterion for linear systems with time-varying state delay. IFAC PapersOnLine 48 (2015), 14, 120-125.
DOI
[5] Dey, R., Ghosh, S., Ray, G., Rakshit, A.:
Improved delay-dependent stabilization of time-delay systems with actuator saturation. Int. J. Robust Nonlinear Control 24 (2014), 5, 902-917.
DOI |
MR 3164637
[6] Dey, R., Ray, G., Balas, V. E.:
Stability and stabilization of linear and fuzzy time-delay systems: A linear matrix inequality approach. Springe, 2018.
MR 3806681
[7] Ghaoui, L. El, Oustry, F., AitRami, M.:
A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Automat. Control 42, (1997), 8, 1171-1176.
DOI |
MR 1469081
[8] Fridman, E., Shaked, U.:
An improved stabilization method for linear time-delay systems. IEEE Trans. Automat. Control 47 (2002), 11, 1931-1937.
DOI |
MR 1937712
[9] Fridman, E., Shaked, U.:
Delay-dependent stability and $H_\infty$ control: constant and time-varying delay. Int. J. Control 76 (2003), 1, 48-60.
DOI |
MR 1952833
[10] Gao, H., Wang, C.:
Comments and further results on "A descriptor system approach to $H_\infty$ control of linear time-delay systems. IEEE Trans. Automat. Control 48 (2003), 3, 520-525.
DOI |
MR 1962266
[11] Gahinet, P., Nemirovskii, A., Laub, A. J., Chilali, M.: LMI Control Toolbox for use with MATLAB. MathWorks, Natick 1995.
[12] Gu, K., Kharitonov, V. L., Chen, J.:
Stability Analysis of Time-delay Systems. Birkhauser, Boston 2003.
MR 3075002
[13] Gu, K., Niculescu, S. I.:
Survey on recent results in the stability and control of time-delay systems. J. Dyn. Sys. Meas. Control 125 (2003), 2, 158-165.
DOI
[14] He, Y., Wang, Q. G., Chong, L., Min, W.:
Delay-range dependent stability for systems with time-varying delay. Automatica 43 (2007), 2, 371-376.
DOI |
MR 2281843
[15] Kim, J. H.:
Note on stability of linear systems with time-varying delays. Automatica 47 (2011), 9, 2118-2121.
DOI |
MR 2886830
[16] Kim, K. H., Park, M. J., Kwon, O. M., Lee, S. M., Cha, E. J.: Stability and robust $H_\infty$ control for time-delayed systems with parameter uncertainties and stochastic disturbances. J. Engrg. Technol. 11 (2016), 1, 200-214.
[17] Li, T., Guo, L., Zhang, Y.:
Delay range dependent robust stability and stabilization for uncertain systems with time-varying delay. Int. J. Robust Nonlinear Control: IFAC-Affiliated J. 18 (2008), 13, 1372-1387.
DOI |
MR 2440687
[18] Li, L., Jia, Y.:
Non-fragile dynamic output feedback control for linear systems with time-varying delay. IET Control Theory Appl. 3 (2009), 8, 995-1005.
DOI |
MR 2561153
[19] Moon, Y. S., Park, P. G., Kwon, W. H., Lee, Y. S.:
Delay-dependent robust stabilization of uncertain state-delayed systems. Int. J. Control 74 (2001), 14, 1447-1455.
DOI |
MR 1857590
[20] Park, P.:
A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans. Automat. Control 44 (1999), 4, 876-877.
DOI |
MR 1684455
[21] Park, P. G., Ko, J. W., Jeong, C.:
Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47 (2011), 1, 235-238.
DOI |
MR 2878269
[22] Ramakrishnan, K., Ray, G.:
An improved delay-dependent stability criterion for a class of Lur'e systems of neutral type. J. Dynamic Systems Measurement Control 134 (2012), 011008, 1-5.
DOI
[23] Parlakci, M. A.:
Improved robust stability criteria and design of robust stabilizing controller for uncertain linear time-delay systems. Int. J. Robust Nonlinear Control: IFAC-Affiliated J. 16 (2006), 13, 599-636.
DOI |
MR 2250425
[24] Prasad, K. C. Rajendra, Arun, N. K., Venkatesh, M.: An improved stabilization criteria for linear systems with time-varying delay using a new Lyapunov-Krasovskii functional. In: Control and Measurement Applications for Smart Grid; Springer, Singapore 2022, pp. 335-346.
[25] Richard, J. P.:
Time-delay systems: An overview of some recent advances and open problems. Automatica 39 (2003), 10, 1667-1694.
DOI |
MR 2141765 |
Zbl 1145.93302
[26] Seuret, A., Gouaisbaut, F.:
Wirtinger based integral inequality: Application to time-delay systems. Automatica 49 (2013), 9, 2860-2866.
DOI |
MR 3084475
[27] Seuret, A., Gouaisbaut, F.:
Stability of linear systems with time-varying delays using Bessel-Legendre inequalities. IEEE Trans. Automat. Control. 63 (2018), 1, 225-232.
DOI |
MR 3744841
[28] Sun, J., Liu, G. P., Chen, J.:
Delay-dependent stability and stabilization of neutral time-delay systems. Int. Robust Nonlinear Control 19 (2009), 1364-1375.
DOI |
MR 2537819
[29] Venkatesh, M., Patra, S., Ramakrishnan, K., Ray, G.:
An improved stability result for linear time-delay system using a new Lyapunov-Krasovskii functional and extended reciprocally convex inequality. Int. J. Systems Sci. 49 (2018), 12, 2586-2600.
DOI |
MR 3859628
[30] Venkatesh, M., Patra, S., Ray, G.:
Stabilization of uncertain linear system with time-varying delay using a new Lyapunov-Krasovskii functional. In: IEEE Tencon 10 Conference 2018, pp. 205-210.
DOI
[31] Venkatesh, M., Patra, S., Ray, G.:
Observer-based stabilization of linear discrete time-varying delay systems. J. Dynamic Systems Measurement Control 143 (2021), 12, 124501.
DOI
[32] Venkatesh, M., Patra, S., Ray, G.:
Improved robust stability analysis and stabilization conditions for discrete-time linear systems with time-varying delay. Int. J. Automat. Control 16 (2022), 5, 547-572.
DOI
[33] Wang, C., Zhou, X., Shi, X., Jin, Y.:
Robust control for uncertain variable fractional order differential systems considering time-varying delays and nonlinear perturbations. Optimal Control Appl. Methods 43 (2022), 3, 979-993.
DOI |
MR 4417809
[34] Wu, M., He, Y., She, J. H.:
New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Trans. Automat. Control 49 (2014), 12, 2266-2271.
DOI |
MR 2106758
[35] Zhang, C. K., He, Y., Jiang, L., Wu, M., Wang, Q. G.:
An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica 85 (2017), 481-485.
DOI |
MR 3712893
[36] Zhang, X. M., Han, Q. L.:
New stability criterion using a matrix-based quadratic convex approach and some novel integralX inequalities. IET Control Theory Appl. 8 (2014), 12, 1054-1061.
DOI |
MR 3236847
[37] Zhang, X. M., Wu, M., She, J. H., He, Y.:
Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica 41 (2005), 1405-1412.
DOI |
MR 2160485
[38] Zhang, J., Xia, Y., Shi, P., Mahmoud, M. S.:
New results on stability and stabilisation of systems with interval time-varying delay. IET Control Theory Appl. 5 (2011), 3, 429-436.
DOI |
MR 2857652