[1] Boley, B. A.:
The determination of temperature, stresses, and deflections in two-dimen-sional thermoelastic problems. J. Aeronaut. Sci. 23 (1956), 67-75.
DOI 10.2514/8.3503 |
Zbl 0070.18903
[4] Chen, X., Li, Y., Li, D.:
Spatial decay bounds for the Brinkman fluid equations in double-diffusive convection. Symmetry 14 (2022), Article ID 98, 22 pages.
DOI 10.3390/sym14010098
[5] Saint-Venant, A. J. B. De: Mémoire sur la flexion des prismes. J. Math. Pures Appl. (2) 1 (1856), 89-189 French.
[9] Giorgi, T.:
Derivation of the Forchheimer law via matched asymptotic expansions. Transp. Porous Media 29 (1997), 191-206.
DOI 10.1023/A:1006533931383
[10] Horgan, C. O.:
Recent developments concerning Saint-Venant's principle: An update. Appl. Mech. Rev. 42 (1989), 295-302.
DOI 10.1115/1.3152414 |
MR 1021553
[11] Horgan, C. O.:
Recent developments concerning Saint-Venant's principle: A second update. Appl. Mech. Rev. 49 (1996), S101--S111.
DOI 10.1115/1.3101961 |
MR 1021553
[16] Knowles, J. K.:
On Saint-Venant's principle in the two-dimensional linear theory of elasticity. Arch. Ration. Mech. Anal. 21 (1966), 1-22.
DOI 10.1007/BF00253046 |
MR 0187480
[17] Knowles, J. K.:
An energy estimate for the biharmonic equation and its application to Saint-Venant's principle in plane elastostatics. Indian J. Pure Appl. Math. 14 (1983), 791-805.
MR 0714832 |
Zbl 0524.73001
[18] Leseduarte, M. C., Quintanilla, R.:
Phragmén-Lindelöf of alternative for the Laplace equation with dynamic boundary conditions. J. Appl. Anal. Comput. 7 (2017), 1323-1335.
DOI 10.11948/2017081 |
MR 3723923 |
Zbl 1447.35085
[19] Li, Y., Chen, X.:
Phragmén-Lindelöf alternative results in time-dependent double-diffu-sive Darcy plane flow. Math. Methods Appl. Sci. 45 (2022), 6982-6997.
DOI 10.1002/mma.8220 |
MR 4443365
[22] Li, Y., Xiao, S., Zeng, P.:
The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere. J. Math. Inequal. 15 (2021), 293-304.
DOI 10.7153/jmi-2021-15-22 |
MR 4364642 |
Zbl 1465.35018
[23] Li, Y., Zeng, P.:
Continuous dependence on the heat source of 2D large-scale primitive equations in oceanic dynamics. Symmetry 13 (2021), Article ID 1961, 16 pages.
DOI 10.3390/sym13101961
[28] Liu, Y., Qin, X., Shi, J., Zhi, W.:
Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in $\Bbb R^2$. Appl. Math. Comput. 411 (2021), Article ID 126488, 10 pages.
DOI 10.1016/j.amc.2021.126488 |
MR 4284432 |
Zbl 07426871
[38] Quintanilla, R., Racke, R.:
Spatial behavior in phase-lag heat conduction. Differ. Integral Equ. 28 (2015), 291-308.
MR 3306564 |
Zbl 1363.35236
[42] Straughan, B.:
Effect of anisotropy and boundary conditions on Darcy and Brinkman porous penetrative convection. Environmental Fluid Mech. 22 (2022), 1233-1252.
DOI 10.1007/s10652-022-09888-9