Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
spatial behavior; Forchheimer equations; energy estimate bounds; upper bound; porous medium
Summary:
The spatial behavior of solutions is studied in the model of Forchheimer equations. Using the energy estimate method and the differential inequality technology, exponential decay bounds for solutions are derived. To make the decay bounds explicit, we obtain the upper bound for the total energy. We also extend the study of spatial behavior of Forchheimer porous material in a saturated porous medium.
References:
[1] Boley, B. A.: The determination of temperature, stresses, and deflections in two-dimen-sional thermoelastic problems. J. Aeronaut. Sci. 23 (1956), 67-75. DOI 10.2514/8.3503 | Zbl 0070.18903
[2] Chen, W.: Cauchy problem for thermoelastic plate equations with different damping mechanisms. Commun. Math. Sci. 18 (2020), 429-457. DOI 10.4310/CMS.2020.v18.n2.a7 | MR 4101316 | Zbl 1472.35048
[3] Chen, W.: Decay properties and asymptotic profiles for elastic waves with Kelvin-Voigt damping in 2D. Asymptotic Anal. 117 (2020), 113-140. DOI 10.3233/ASY-191548 | MR 4158328 | Zbl 1467.35048
[4] Chen, X., Li, Y., Li, D.: Spatial decay bounds for the Brinkman fluid equations in double-diffusive convection. Symmetry 14 (2022), Article ID 98, 22 pages. DOI 10.3390/sym14010098
[5] Saint-Venant, A. J. B. De: Mémoire sur la flexion des prismes. J. Math. Pures Appl. (2) 1 (1856), 89-189 French.
[6] Firdaouss, M., Guermond, J.-L., Quéré, P. Le: Nonlinear corrections to Darcy's law at low Reynolds numbers. J. Fluid Mech. 343 (1997), 331-350. DOI 10.1017/S0022112097005843 | MR 1465159 | Zbl 0897.76091
[7] Franchi, F., Straughan, B.: Continuous dependence and decay for the Forchheimer equations. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 459 (2003), 3195-3202. DOI 10.1098/rspa.2003.1169 | MR 2027361 | Zbl 1058.35030
[8] Gentile, M., Straughan, B.: Structural stability in resonant penetrative convection in a Forchheimer porous material. Nonlinear Anal., Real World Appl. 14 (2013), 397-401. DOI 10.1016/j.nonrwa.2012.07.003 | MR 2969842 | Zbl 1254.76142
[9] Giorgi, T.: Derivation of the Forchheimer law via matched asymptotic expansions. Transp. Porous Media 29 (1997), 191-206. DOI 10.1023/A:1006533931383
[10] Horgan, C. O.: Recent developments concerning Saint-Venant's principle: An update. Appl. Mech. Rev. 42 (1989), 295-302. DOI 10.1115/1.3152414 | MR 1021553
[11] Horgan, C. O.: Recent developments concerning Saint-Venant's principle: A second update. Appl. Mech. Rev. 49 (1996), S101--S111. DOI 10.1115/1.3101961 | MR 1021553
[12] Horgan, C. O., Knowles, J. K.: Recent developments concerning Saint-Venant's principle. Adv. Appl. Mech. 23 (1983), 179-269. DOI 10.1016/S0065-2156(08)70244-8 | MR 0889288 | Zbl 0569.73010
[13] Horgan, C. O., Payne, L. E.: Phragmén-Lindelöf type results for harmonic functions with nonlinear boundary conditions. Arch. Ration. Mech. Anal. 122 (1993), 123-144. DOI 10.1007/BF00378164 | MR 1217587 | Zbl 0790.31002
[14] Knops, R. J., Quintanilla, R.: Spatial behaviour in thermoelastostatic cylinders of indefinitely increasing cross-section. J. Elasticity 121 (2015), 89-117. DOI 10.1007/s10659-015-9523-8 | MR 3394434 | Zbl 1326.35376
[15] Knops, R. J., Quintanilla, R.: Spatial decay in transient heat conduction for general elongated regions. Q. Appl. Math. 76 (2018), 611-625. DOI 10.1090/qam/1497 | MR 3855824 | Zbl 1397.58010
[16] Knowles, J. K.: On Saint-Venant's principle in the two-dimensional linear theory of elasticity. Arch. Ration. Mech. Anal. 21 (1966), 1-22. DOI 10.1007/BF00253046 | MR 0187480
[17] Knowles, J. K.: An energy estimate for the biharmonic equation and its application to Saint-Venant's principle in plane elastostatics. Indian J. Pure Appl. Math. 14 (1983), 791-805. MR 0714832 | Zbl 0524.73001
[18] Leseduarte, M. C., Quintanilla, R.: Phragmén-Lindelöf of alternative for the Laplace equation with dynamic boundary conditions. J. Appl. Anal. Comput. 7 (2017), 1323-1335. DOI 10.11948/2017081 | MR 3723923 | Zbl 1447.35085
[19] Li, Y., Chen, X.: Phragmén-Lindelöf alternative results in time-dependent double-diffu-sive Darcy plane flow. Math. Methods Appl. Sci. 45 (2022), 6982-6997. DOI 10.1002/mma.8220 | MR 4443365
[20] Li, Y., Chen, X., Shi, J.: Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid. Appl. Math. Optim. 84 (2021), S979--S999. DOI 10.1007/s00245-021-09791-7 | MR 4316807 | Zbl 1477.35173
[21] Li, Y., Xiao, S.: Continuous dependence of 2D large scale primitive equations on the boundary conditions in oceanic dynamics. Appl. Math., Praha 67 (2022), 103-124. DOI 10.21136/AM.2021.0076-20 | MR 4392408 | Zbl 07478520
[22] Li, Y., Xiao, S., Zeng, P.: The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere. J. Math. Inequal. 15 (2021), 293-304. DOI 10.7153/jmi-2021-15-22 | MR 4364642 | Zbl 1465.35018
[23] Li, Y., Zeng, P.: Continuous dependence on the heat source of 2D large-scale primitive equations in oceanic dynamics. Symmetry 13 (2021), Article ID 1961, 16 pages. DOI 10.3390/sym13101961
[24] Lin, C.: A Phragmén-Lindelöf alternative for a class of second order quasilinear equations in $\Bbb R^3$. Acta Math. Sci. 16 (1996), 181-191. DOI 10.7153/mia-09-60 | MR 1402960 | Zbl 0866.35041
[25] Liu, Y.: Continuous dependence for a thermal convection model with temperature-depen-dent solubility. Appl. Math. Comput. 308 (2017), 18-30. DOI 10.1016/j.amc.2017.03.004 | MR 3638153 | Zbl 1411.35228
[26] Liu, Y., Lin, C.: Phragmén-Lindelöf type alternative results for the Stokes flow equation. Math. Inequal. Appl. 9 (2006), 671-694. DOI 10.7153/mia-09-60 | MR 2268176 | Zbl 1116.35021
[27] Liu, Y., Lin, Y., Li, Y.: Convergence result for the thermoelasticity of type III. Appl. Math. Lett. 26 (2013), 97-102. DOI 10.1016/j.aml.2012.04.001 | MR 2971407 | Zbl 1252.74014
[28] Liu, Y., Qin, X., Shi, J., Zhi, W.: Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in $\Bbb R^2$. Appl. Math. Comput. 411 (2021), Article ID 126488, 10 pages. DOI 10.1016/j.amc.2021.126488 | MR 4284432 | Zbl 07426871
[29] Liu, Y., Xiao, S., Lin, Y.: Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Math. Comput. Simul. 150 (2018), 66-82. DOI 10.1016/j.matcom.2018.02.009 | MR 3783079 | Zbl 07316235
[30] Liverani, L., Quintanilla, R.: Thermoelasticity with temperature and microtemperatures with fading memory. (to appear) in Math. Mech. Solids. DOI 10.1177/10812865221115359 | MR 4574895
[31] Néel, M.-C.: Convection forcée en milieu poreux: Écarts à la loi de Darcy. C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc. Phys. Astron. 326 (1998), 615-620 French. DOI 10.1016/S1251-8069(98)89004-0 | Zbl 0915.76086
[32] Payne, L. E., Schaefer, P. W.: Some Phragmén-Lindelöf type results for the biharmonic equation. Z. Angew. Math. Phys. 45 (1994), 414-432. DOI 10.1007/BF00945929 | MR 1278684 | Zbl 0810.31001
[33] Payne, L. E., Song, J. C.: Spatial decay bounds for the Forchheimer equations. Int. J. Eng. Sci. 40 (2002), 943-956. DOI 10.1016/S0020-7225(01)00102-1 | Zbl 1211.76119
[34] Payne, L. E., Straughan, B.: Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J. Math. Pures Appl., IX. Sér. 77 (1998), 317-354. DOI 10.1016/S0021-7824(98)80102-5 | MR 1623387 | Zbl 0906.35067
[35] Payne, L. E., Straughan, B.: Convergence and continuous dependence for the Brink-man-Forchheimer equations. Stud. Appl. Math. 102 (1999), 419-439. DOI 10.1111/1467-9590.00116 | MR 1684989 | Zbl 1136.76448
[36] Payne, L. E., Straughan, B.: Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium. Stud. Appl. Math. 105 (2000), 59-81. DOI 10.1111/1467-9590.00142 | MR 1856630 | Zbl 1136.35318
[37] Quintanilla, R.: Some remarks on the fast spatial growth/decay in exterior regions. Z. Angew. Math. Phys. 70 (2019), Article ID 83, 18 pages. DOI 10.1007/s00033-019-1127-x | MR 3948948 | Zbl 1415.35070
[38] Quintanilla, R., Racke, R.: Spatial behavior in phase-lag heat conduction. Differ. Integral Equ. 28 (2015), 291-308. MR 3306564 | Zbl 1363.35236
[39] Shi, J., Liu, Y.: Structural stability for the Forchheimer equations interfacing with a Darcy fluid in a bounded region in $\Bbb R^3$. Bound. Value Probl. 2021 (2021), Article ID 46, 22 pages. DOI 10.1186/s13661-021-01525-6 | MR 4252231 | Zbl 07509890
[40] Straughan, B.: The Energy Method, Stability, and Nonlinear Convection. Applied Mathematical Sciences 91. Springer, New York (2004). DOI 10.1007/978-0-387-21740-6 | MR 2003826 | Zbl 1032.76001
[41] Straughan, B.: Continuous dependence on the heat source in resonant porous penetrative convection. Stud. Appl. Math. 127 (2011), 302-314. DOI 10.1111/j.1467-9590.2011.00521.x | MR 2852484 | Zbl 1250.80001
[42] Straughan, B.: Effect of anisotropy and boundary conditions on Darcy and Brinkman porous penetrative convection. Environmental Fluid Mech. 22 (2022), 1233-1252. DOI 10.1007/s10652-022-09888-9
Partner of
EuDML logo