Previous |  Up |  Next

Article

Title: Global existence of smooth solutions for the compressible viscous fluid flow with radiation in $\mathbb {R}^3$ (English)
Author: O, Hyejong
Author: Hong, Hakho
Author: Kim, Jongsung
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 5
Year: 2023
Pages: 535-558
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in $[0,\infty )$, provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux. (English)
Keyword: radiation hydrodynamics
Keyword: Navier-Stokes system with radiation
Keyword: existence
Keyword: convergence rate
MSC: 35A01
MSC: 35B40
MSC: 76N10
idZBL: Zbl 07790534
idMR: MR4644997
DOI: 10.21136/AM.2023.0059-22
.
Date available: 2023-10-05T15:07:42Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151831
.
Reference: [1] Chen, Z., Chai, X., Wang, W.: Convergence rate of solutions to strong contact discontinuity for the one-dimensional compressible radiation hydrodynamics model.Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 265-282. Zbl 1363.35243, MR 3432764, 10.1016/S0252-9602(15)30094-1
Reference: [2] Choe, K.-I., Hong, H., Kim, J.: Non-degenerate stationary solution for outflow problem on the 1-D viscous heat-conducting gas with radiation.Commun. Math. Sci. 18 (2020), 1661-1684. Zbl 1467.35237, MR 4176354, 10.4310/CMS.2020.v18.n6.a7
Reference: [3] Danchin, R., Ducomet, B.: On a simplified model for radiating flows.J. Evol. Equ. 14 (2014), 155-195. Zbl 1302.35313, MR 3169034, 10.1007/s00028-013-0211-5
Reference: [4] Danchin, R., Ducomet, B.: Existence of strong solutions with critical regularity to a polytropic model for radiating flows.Ann. Mat. Pura Appl. (4) 196 (2017), 107-153. Zbl 1369.35055, MR 3600861, 10.1007/s10231-016-0566-7
Reference: [5] Ducomet, B., Feireisl, E., Nečasová, Š.: On a model in radiation hydrodynamics.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28 (2011), 797-812. Zbl 1328.76074, MR 2859928, 10.1016/J.ANIHPC.2011.06.002
Reference: [6] Ducomet, B., Nečasová, Š.: Global existence of solutions for the one-dimensional motions of a compressible viscous gas with radiation: An ``infrarelativistic model''.Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 3258-3274. Zbl 1185.35158, MR 2587361, 10.1016/j.na.2009.12.005
Reference: [7] Ducomet, B., Nečasová, Š.: Global weak solutions to the 1D compressible Navier-Stokes equations with radiation.Commun. Math. Anal. 8 (2010), 23-65. Zbl 1194.35305, MR 2738332
Reference: [8] Ducomet, B., Nečasová, Š.: Large-time behavior of the motion of a viscous heat-conducting one dimensional gas coupled to radiation.Ann. Mat. Pura Appl. (4) 191 (2012), 219-260. Zbl 1238.35085, MR 2909797, 10.1007/s10231-010-0180-z
Reference: [9] Ducomet, B., Nečasová, Š.: Asymptotic behavior of the motion of a viscous heat-conducting one-dimensional gas with radiation: The pure scattering case.Anal. Appl., Singap. 11 (2013), Article ID 1350003, 29 pages. Zbl 1261.35102, MR 3019508, 10.1142/S0219530513500036
Reference: [10] Ducomet, B., Nečasová, Š.: Global existence for weak solutions of the Cauchy problem in a model of radiation hydrodynamics.J. Math. Anal. Appl. 420 (2014), 464-482. Zbl 1296.35140, MR 3229835, 10.1016/j.jmaa.2014.05.043
Reference: [11] Gao, J., Tao, Q., Yao, Z.-A.: Long-time behavior of solution for the compressible nematic liquid crystal flows in $\Bbb{R}^3$.J. Differ. Equations 261 (2016), 2334-2383. Zbl 1347.35200, MR 3505193, 10.1016/j.jde.2016.04.033
Reference: [12] Guo, Y., Wang, Y.: Decay of dissipative equations and negative Sobolev spaces.Commun. Partial Differ. Equations 37 (2012), 2165-2208. Zbl 1258.35157, MR 3005540, 10.1080/03605302.2012.696296
Reference: [13] Hong, H.: Asymptotic behavior toward the combination of contact discontinuity with rarefaction waves for 1-D compressible viscous gas with radiation.Nonlinear Anal., Real World Appl. 35 (2017), 175-199. Zbl 1356.35047, MR 3595322, 10.1016/j.nonrwa.2016.07.005
Reference: [14] Hong, H., Wang, T.: Stability of stationary solutions to the inflow problem for full compressible Navier-Stokes equations with a large initial perturbation.SIAM J. Math. Anal. 49 (2017), 2138-2166. Zbl 1371.35196, MR 3664215, 10.1137/16M108536X
Reference: [15] Jiang, P.: Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics.Discrete Contin. Dyn. Syst. 35 (2015), 3015-3037. Zbl 1332.76046, MR 3343552, 10.3934/dcds.2015.35.3015
Reference: [16] Jiang, P.: Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics.Discrete Contin. Dyn. Syst. 37 (2017), 2045-2063. Zbl 1360.76222, MR 3640587, 10.3934/dcds.2017087
Reference: [17] Jiang, P.: Unique global solution to the thermally radiative magnetohydrodynamics equations.Z. Angew. Math. Phys. 69 (2018), Article ID 96, 29 pages. Zbl 1404.35358, MR 3817778, 10.1007/s00033-018-0991-0
Reference: [18] Jiang, S., Ju, Q., Liao, Y.: Nonequilibrium-diffusion limit of the compressible Euler-P$_1$ approximation radiation model at low Mach number.SIAM J. Math. Anal. 53 (2021), 2491-2522. Zbl 1464.35183, MR 4249060, 10.1137/20M1344342
Reference: [19] Jiang, S., Li, F., Xie, F.: Nonrelativistic limit of the compressible Navier-Stokes-Fourier-P$_1$ approximation model arising in radiation hydrodynamics.SIAM J. Math. Anal. 47 (2015), 3726-3746. Zbl 1331.35262, MR 3403137, 10.1137/140987596
Reference: [20] Jiang, S., Xie, F., Zhang, J. W.: A global existence result in radiation hydrodynamics.Industrial and Applied Mathematics in China Series in Contemporary Applied Mathematics 10. World Scientific, Hackensack (2009), 25-48. Zbl 1423.76384, MR 2548855
Reference: [21] Jiang, P., Yu, F.: Global well posedness for the thermally radiative magnetohydrodynamic equations in 3D.J. Funct. Spaces 2020 (2020), Article ID 4748101, 11 pages. Zbl 1448.35396, MR 4124574, 10.1155/2020/4748101
Reference: [22] Jiang, P., Zhou, Y.: Smooth solutions to diffusion approximation radiation hydrodynamics equations.J. Math. Anal. Appl. 466 (2018), 324-337. Zbl 1391.35174, MR 3818119, 10.1016/j.jmaa.2018.05.071
Reference: [23] Lattanzio, C., Mascia, C., Serre, D.: Shock waves for radiative hyperbolic-elliptic systems.Indiana Univ. Math. J. 56 (2007), 2601-2640. Zbl 1132.35062, MR 2360621, 10.1512/iumj.2007.56.3043
Reference: [24] Li, Y., Zhu, S.: Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum.J. Differ. Equations 256 (2014), 3943-3980. Zbl 1290.35008, MR 3190488, 10.1016/j.jde.2014.03.007
Reference: [25] Li, Y., Zhu, S.: Existence results for compressible radiation hydrodynamic equations with vacuum.Commun. Pure Appl. Anal. 14 (2015), 1023-1052. Zbl 1314.35103, MR 3320164, 10.3934/cpaa.2015.14.1023
Reference: [26] Li, Y., Zhu, S.: Existence results and blow-up criterion of compressible radiation hydrodynamic equations.J. Dyn. Differ. Equations 29 (2017), 549-595. Zbl 1378.35244, MR 3651601, 10.1007/s10884-015-9455-9
Reference: [27] Lin, C.: Asymptotic stability of rarefaction waves in radiative hydrodynamics.Commun. Math. Sci. 9 (2011), 207-223. Zbl 1282.35070, MR 2836843, 10.4310/CMS.2011.v9.n1.a10
Reference: [28] Lin, C., Coulombel, J.-F., Goudon, T.: Shock profiles for non-equilibrium radiating gases.Physica D 218 (2006), 83-94. Zbl 1096.35086, MR 2234210, 10.1016/j.physd.2006.04.012
Reference: [29] Lin, C., Coulombel, J.-F., Goudon, T.: Asymptotic stability of shock profiles in radiative hydrodynamics.C. R., Math., Acad. Sci. Paris 345 (2007), 625-628. Zbl 1387.35497, MR 2371479, 10.1016/j.crma.2007.10.029
Reference: [30] Nguyen, T., Plaza, R. G., Zumbrun, K.: Stability of radiative shock profiles for hyperbolic-elliptic coupled systems.Physica D 239 (2010), 428-453. Zbl 1195.37045, MR 2593039, 10.1016/j.physd.2010.01.011
Reference: [31] Nirenberg, L.: On elliptic partial differential equations.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162. Zbl 0088.07601, MR 0109940
Reference: [32] Pomraning, G. C.: The Equations of Radiation Hydrodynamics.Pergamon Press, Elmsford (1973).
Reference: [33] Pu, X., Guo, B.: Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction.Kinet. Relat. Models 9 (2016), 165-191. Zbl 1330.35339, MR 3422649, 10.3934/krm.2016.9.165
Reference: [34] Pu, X., Xu, X.: Asymptotic behaviors of the full quantum hydrodynamic equations.J. Math. Anal. Appl. 454 (2017), 219-245. Zbl 1369.35067, MR 3649851, 10.1016/j.jmaa.2017.04.053
Reference: [35] Qin, Y., Feng, B., Zhang, M.: Large-time behavior of solutions for the one-dimensional infrarelativistic model of a compressible viscous gas with radiation.J. Differ. Equations 252 (2012), 6175-6213. Zbl 1366.76102, MR 2911831, 10.1016/j.jde.2012.02.022
Reference: [36] Rohde, C., Wang, W., Xie, F.: Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: Superposition of rarefaction and contact waves.Commun. Pure Appl. Anal. 12 (2013), 2145-2171. Zbl 1282.35314, MR 3015674, 10.3934/cpaa.2013.12.2145
Reference: [37] Rohde, C., Xie, F.: Decay rates to viscous contact waves for a 1D compressible radiation hydrodynamics model.Math. Models Methods Appl. Sci. 23 (2013), 441-469. Zbl 1270.35112, MR 3010836, 10.1142/S0218202512500522
Reference: [38] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30. Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095, 10.1515/9781400883882
Reference: [39] Tan, Z., Zhang, R.: Optimal decay rates of the compressible fluid models of Korteweg type.Z. Angew. Math. Phys. 65 (2014), 279-300. Zbl 1292.35052, MR 3187946, 10.1007/s00033-013-0331-3
Reference: [40] Wang, Y.: Decay of the Navier-Stokes-Poisson equations.J. Differ. Equations 253 (2012), 273-297. Zbl 1239.35117, MR 2917409, 10.1016/j.jde.2012.03.006
Reference: [41] Wang, Z.: Vanishing viscosity limit of the radiation hydrodynamic equations with far field vacuum.J. Math. Anal. Appl. 452 (2017), 747-779. Zbl 1367.35131, MR 3632673, 10.1016/j.jmaa.2017.03.024
Reference: [42] Wang, Z.: Existence results for the radiation hydrodynamic equations with degenerate viscosity coefficients and vacuum.J. Differ. Equations 265 (2018), 354-388. Zbl 1391.35311, MR 3782547, 10.1016/j.jde.2018.02.035
Reference: [43] Wang, J., Xie, F.: Asymptotic stability of viscous contact wave for the 1D radiation hydrodynamics system.J. Differ. Equations 251 (2011), 1030-1055. Zbl 1228.35047, MR 2812581, 10.1016/j.jde.2011.03.011
Reference: [44] Wang, J., Xie, F.: Asymptotic stability of viscous contact wave for the one-dimensional compressible viscous gas with radiation.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 4138-4151. Zbl 1221.35288, MR 2802993, 10.1016/j.na.2011.03.047
Reference: [45] Wang, J., Xie, F.: Singular limit to strong contact discontinuity for a 1D compressible radiation hydrodynamics model.SIAM J. Math. Anal. 43 (2011), 1189-1204. Zbl 1228.35024, MR 2800574, 10.1137/100792792
Reference: [46] Wang, W., Xie, F.: The initial value problem for a multi-dimensional radiation hydrodynamics model with viscosity.Math. Methods Appl. Sci. 34 (2011), 776-791. Zbl 1216.35099, MR 2815767, 10.1002/mma.1398
Reference: [47] Wang, W., Xie, F., Yang, X.: Decay rates of solutions to a P1-approximation model arising from radiation hydrodynamics.J. Differ. Equations 264 (2018), 2936-2969. Zbl 1386.76141, MR 3737859, 10.1016/j.jde.2017.11.007
Reference: [48] Xie, F.: Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model.Discrete Contin. Dyn. Syst., Ser. B 17 (2012), 1075-1100. Zbl 1241.35015, MR 2873128, 10.3934/dcdsb.2012.17.1075
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo