Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Isbell--Mrówka spaces; almost disjoint families; almost-normal; weak $\lambda$-set
Summary:
We recall some classical results relating normality and some natural weakenings of normality in $\Psi$-spaces over almost disjoint families of branches in the Cantor tree to special sets of reals like $Q$-sets, $\lambda$-sets and $\sigma$-sets. We introduce a new class of special sets of reals which corresponds to the corresponding almost disjoint family of branches being $\aleph_0$-separated. This new class fits between $\lambda$-sets and perfectly meager sets. We also discuss conditions for an almost disjoint family $\mathcal A$ being potentially almost-normal (pseudonormal), in the sense that $\mathcal A$ is almost-normal (pseudonormal) in some c.c.c. forcing extension.
References:
[1] Blass A.: Combinatorial cardinal characteristics of the continuum. Handbook of set theory 1,2,3, Springer, Dordrecht, 2010, pages 395–489. MR 2768685
[2] Brendle J.: Dow’s principle and $Q$-sets. Canad. Math. Bull. 42 (1999), no. 1, 13–24. DOI 10.4153/CMB-1999-002-2 | MR 1695894
[3] Mauldin R. D.: On rectangles and countably generated families. Fund. Math. 95 (1977), no. 2, 129–139. DOI 10.4064/fm-95-2-129-139 | MR 0440497
[4] de Oliveira Rodrigues V., dos Santos Ronchim V.: Almost-normality of Isbell–Mrówka spaces. Topology Appl. 288 (2021), Paper No. 107470, 13 pages. MR 4186077
[5] Engelking R.: General Topology. Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[6] Fleissner W. G., Miller A. W.: On $Q$ sets. Proc. Amer. Math. Soc. 78 (1980), no. 2, 280–284. MR 0550513
[7] Garcia-Balan S. A., Szeptycki P. J.: Weak normality properties in $\Psi$-spaces. Fund. Math. 258 (2022), no. 2, 137–151. DOI 10.4064/fm935-11-2021 | MR 4434347
[8] Hernández-Hernández F., Hrušák M.: Topology of Mrówka–Isbell spaces. in Pseudocompact Topological Spaces, Springer, Cham, 2018, pages 253–289. MR 3822423
[9] Hernández-Hernández F., Hrušák M.: $Q$-sets and normality of $\Psi$-spaces. Spring Topology and Dynamical Systems Conf., Topology Proc. 29 (2005), no. 1, 155–165. MR 2182924
[10] Hrušák M.: Almost Disjoint Families and Topology. in Recent Progress in General Topology III, Atlantis Press, Paris, 2014, pages 601–638. MR 3205494
[11] Hrušák M., Guzmán O.: $n$-Luzin gaps. Topology Appl. 160 (2013), no. 12, 1364–1374. DOI 10.1016/j.topol.2013.05.015 | MR 3072697
[12] Martin D. A., Solovay R. M.: Internal Cohen extensions. Ann. Math. Logic 2 (1970), no. 2, 143–178. DOI 10.1016/0003-4843(70)90009-4 | MR 0270904
[13] Miller A. W.: On the length of Borel hierarchies. Ann. Math. Logic 16 (1979), no. 3, 233–267. DOI 10.1016/0003-4843(79)90003-2 | MR 0548475
[14] Miller A. W.: Special subsets of the real line. in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 201–233. MR 0776624 | Zbl 0588.54035
[15] Miller A. W.: A MAD $Q$-set. Fund. Math. 178 (2003), no. 3, 271–281. MR 2030486
[16] Reed G. M.: Set-theoretic problems in Moore spaces. in Open Problems in Topology, North-Holland, Amsterdam, 1990, pages 163–181. MR 1078645
[17] van Douwen E. K.: The integers and topology. in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 111–167. MR 0776622 | Zbl 0561.54004
Partner of
EuDML logo