[1] Blass A.:
Combinatorial cardinal characteristics of the continuum. Handbook of set theory 1,2,3, Springer, Dordrecht, 2010, pages 395–489.
MR 2768685
[4] de Oliveira Rodrigues V., dos Santos Ronchim V.:
Almost-normality of Isbell–Mrówka spaces. Topology Appl. 288 (2021), Paper No. 107470, 13 pages.
MR 4186077
[5] Engelking R.:
General Topology. Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warszawa, 1977.
MR 0500780 |
Zbl 0684.54001
[6] Fleissner W. G., Miller A. W.:
On $Q$ sets. Proc. Amer. Math. Soc. 78 (1980), no. 2, 280–284.
MR 0550513
[8] Hernández-Hernández F., Hrušák M.:
Topology of Mrówka–Isbell spaces. in Pseudocompact Topological Spaces, Springer, Cham, 2018, pages 253–289.
MR 3822423
[9] Hernández-Hernández F., Hrušák M.:
$Q$-sets and normality of $\Psi$-spaces. Spring Topology and Dynamical Systems Conf., Topology Proc. 29 (2005), no. 1, 155–165.
MR 2182924
[10] Hrušák M.:
Almost Disjoint Families and Topology. in Recent Progress in General Topology III, Atlantis Press, Paris, 2014, pages 601–638.
MR 3205494
[14] Miller A. W.:
Special subsets of the real line. in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 201–233.
MR 0776624 |
Zbl 0588.54035
[15] Miller A. W.:
A MAD $Q$-set. Fund. Math. 178 (2003), no. 3, 271–281.
MR 2030486
[16] Reed G. M.:
Set-theoretic problems in Moore spaces. in Open Problems in Topology, North-Holland, Amsterdam, 1990, pages 163–181.
MR 1078645
[17] van Douwen E. K.:
The integers and topology. in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 111–167.
MR 0776622 |
Zbl 0561.54004