Previous |  Up |  Next

Article

Keywords:
intersection of submanifolds; CR submanifold of a Sasakian manifold; scalar Levi form
Summary:
We prove a Frankel type theorem for $CR$ submanifolds of Sasakian manifolds, under suitable hypotheses on the index of the scalar Levi forms determined by normal directions. From this theorem we derive some topological information about $CR$ submanifolds of Sasakian space forms.
References:
[1] Bejancu, A.: Geometry of CR-submanifolds. Mathematics and its Applications (East European Series), vol. 23, D. Reidel Publishing Co., Dordrecht, 1986. MR 0861408 | Zbl 0605.53001
[2] Bejancu, A., Papaghiuc, N.: Semi-invariant submanifolds of a Sasakian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 27 (1981), 163–170. MR 0618723
[3] Binh, T.Q., Ornea, L., Tamássy, L.: Intersections of Riemannian submanifolds. Variations on a theme by T.J. Frankel. Rend. Mat. Appl. (7) 19 (1999), 107–121. MR 1710117
[4] Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. second ed., Progress in Mathematics, vol. 203, Birkhäuser, Boston, 2010. MR 2682326 | Zbl 1246.53001
[5] Djorić, M., Okumura, M.: CR submanifolds of complex projective space. Developments in Mathematics, vol. 19, Springer, New York, 2010. DOI 10.1007/978-1-4419-0434-8_16 | MR 2566776
[6] Falcitelli, M., Ianus, S., Pastore, A.M.: Riemannian submersions and related topics. World Scientific Publishing Co., Singapore, 2004. MR 2110043
[7] Frankel, T.: Manifolds with positive curvature. Pacific J. Math. 11 (1961), 165–171. DOI 10.2140/pjm.1961.11.165 | MR 0123272
[8] Goldberg, S.I., Kobayashi, S.: Holomorphic bisectional curvature. J. Differential Geom. 1 (1967), 225–233. DOI 10.4310/jdg/1214428090 | MR 0227901
[9] Medori, C., Nacinovich, M.: Levi-Tanaka algebras and homogeneous CR manifolds. Compositio Math. 109 (1997), 195–250. DOI 10.1023/A:1000166119593 | MR 1478818
[10] Pitis, G.: On the topology of Saskian manifolds. Math. Scand. 93 (2003), 99–108. DOI 10.7146/math.scand.a-14415 | MR 1997875
[11] Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149, Amer. Math. Soc., Providence, 1996. MR 1390760
[12] Takahashi, T.: Sasakian $\phi $-symmetric spaces. Tôhoku Math. J. 29 (1977), 91–113. DOI 10.2748/tmj/1178240699 | MR 0440472
[13] Tanno, S., Baik, S.-B.: $\phi $-holomorphic special bisectional curvature. Tôhoku Math. J. 22 (1970), 184–190. DOI 10.2748/tmj/1178242811 | MR 0268829
[14] Yano, K., Kon, M.: Generic submanifolds of Sasakian manifolds. Kodai Math. J. 3 (1980), 163–196. DOI 10.2996/kmj/1138036191 | MR 0588453
[15] Yano, K., Kon, M.: CR submanifolds of Kaehlerian and Sasakian manifolds. Progress in Mathematics, vol. 30, Birkhäuser, Boston, Mass., 1983. MR 0688816
[16] Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Mathematics, vol. 3, World Scientific Publishing Co., Singapore, 1984. MR 0794310 | Zbl 0557.53001
Partner of
EuDML logo