Previous |  Up |  Next

Article

Keywords:
${\mathcal{S}}$-Noetherian; Nagata’s idealization; multiplicative system of ideals
Summary:
Let $A$ be a commutative ring and ${\mathcal{S}}$ a multiplicative system of ideals. We say that $A$ is ${\mathcal{S}}$-Noetherian, if for each ideal $Q$ of $A$, there exist $I\in {\mathcal{S}}$ and a finitely generated ideal $F\subseteq Q$ such that $IQ\subseteq F$. In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.
References:
[1] Anderson, D.D., Dumitrescu, T.: S-Noetherian rings. Comm. Algebra 30 (9) (2002), 4407–4416. DOI 10.1081/AGB-120013328 | MR 1936480
[2] Anderson, D.D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3–53. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381
[3] Hamann, E., Houston, E., Johnson, J.: Properties of uppers to zero in $R[X]$. Pacific J. Math. 135 (1988), 65–79. DOI 10.2140/pjm.1988.135.65 | MR 0965685
[4] Hamed, A., Hizem, S.: S-Noetherian rings of the form ${\mathcal{A}}[X]$ and ${\mathcal{A}}[[X]]$. Comm. Algebra 43 (2015), 3848–3856. MR 3360852
[5] Huckaba, J.A.: Commutative rings with zero divizors. Pure Appl. Math., Marcel Dekker, 1988. MR 0938741
[6] Lim, J.W., Oh, D.Y.: S-Noetherian properties on amalgamated algebras along an ideal. J. Pure Appl. Algebra 218 (2014), 1075–1080. DOI 10.1016/j.jpaa.2013.11.003 | MR 3153613
Partner of
EuDML logo