[1] Andrieu, V., Praly, L., Astolfi, A.:
Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control Optim. 47 (2009), 1814-1850.
DOI |
MR 2421331
[2] Bhat, S., Bernstein, D.:
Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17 (2005), 101-127.
DOI |
MR 2150956 |
Zbl 1110.34033
[3] Cao, Y., Wen, C., Song, Y.:
A unified event-triggered control approach for uncertain pure-feedback systems with or without state constraints. IEEE Trans. Cybernet. 51 (2021), 1262-1271.
DOI
[4] Čelikovský, S., Anderle, M., Vyhlídal, T.:
Virtual nonholonomic constraints to damp the varying length pendulum swing. In: IEEE Conference on Decision and Control (CDC) 2021, pp. 3893-3900.
DOI
[5] Čelikovský, S., Aranda-Bricaire, E.:
Constructive nonsmooth stabilization of triangular systems. Syst. Control Lett. 36 (1999), 21-37.
DOI |
MR 1750623
[6] Chen, B., Hu, J., Zhao, Y., Ghosh, B. K.:
Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans. Syst. Man Cybernet. Syst. 52 (2022), 6618-6629.
DOI
[7] Cui, E., Jing, Y., Gao, X.:
Full state constraints control of switched complex networks based on time-varying barrier Lyapunov functions. IET Control Theory Appl. 14 (2020), 2419-2428.
DOI |
MR 4417972
[8] Fang, L., Ding, S., Park, J. H., Ma, L.:
Adaptive fuzzy output-feedback control design for a class of p-norm stochastic nonlinear systems with output constraints. IEEE Trans. Circuits Syst. I, Reg. Papers 68 (2021), 2626-2638.
DOI |
MR 4290703
[9] Filippov, A. F.:
Differential equations with discontinuous right-hand sides. J. Math. Anal. Appl. 154 (1998), 99-128.
MR 0114016
[10] Gómez-Gutiérrez, D., Vázquez, C. R., Čelikovský, S., Sánchez-Torres, J. D., Ruiz-León, J.:
On finite-time and fixed-time consensus algorithms for dynamic networks switching among disconnected digraphs. Int. J. Control 93 (2020), 2120-2134.
DOI |
MR 4134400
[11] Guiochet, J., Machin, M., Waeselynck, H.:
Safety-critical advanced robots: A survey. Robotics Autonomous Systems 94 (2017), 43-52.
DOI
[12] Guo, C., Hu, J.:
Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance. IEEE Trans. Circuits Syst. II, Exp. Briefs (2023).
DOI
[13] Guo, C., Hu, J.:
Fixed-time stabilization of high-order uncertain nonlinear systems: output feedback control design and settling time analysis. J. Syst. Sci. Complex (2023), To appear.
MR 4439669
[14] Hong, Y., Jiang, Z.:
Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans. Automat. Control 51 (2006), 1950-1956.
DOI |
MR 2284421
[15] Hu, C., Qin, W., Li, Z., He, B., Liu, G.:
Consensus-based state estimation for multi-agent systems with constraint information. Kybernetika 53 (2017), 545-561.
DOI |
MR 3684685
[16] Jin, X., Xu, J. X.:
Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties. Automatica 49 (2013), 2508-2516.
DOI |
MR 3072644
[17] Krstic, M., Kokotovic, P. V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design. John Wiley and Sons, Inc. 1995.
[18] Li, Y. X.:
Barrier Lyapunov function-based adaptive asymptotic tracking of nonlinear systems with unknown virtual control coefficients. Automatica 121 (2020), 109181.
DOI |
MR 4131834
[19] Li, J., Yang, Y., Hua, C., Guan, X.:
Fixed-time backstepping control design for high-order strict-feedback non-linear systems via terminal sliding mode. IET Control Theory Appl. 11 (2017), 1184-1193.
DOI |
MR 3700336
[20] Liu, B., Hou, M., Ni, J., Li, Y., Wu, Z.:
Asymmetric integral barrier Lyapunov function-based adaptive tracking control considering full-state with input magnitude and rate constraint. J. Franklin Inst. 357 (2020), 9709-9732.
DOI |
MR 4148332
[21] Liu, Y., Zhang, H., Sun, J., Wang, Y.:
Adaptive fuzzy containment control for multiagent systems with state constraints using unified transformation functions. IEEE Trans. Fuzzy Syst. 30 (2022), 162-174.
DOI
[22] Liu, Y., Zhang, H., Wang, Y., Yu, S.:
Fixed-time cooperative control for robotic manipulators with motion constraints using unified transformation function. Int. J. Robust Nonlinear Control 31 (2021), 6826-6844.
DOI |
MR 4335261
[23] Ma, J., Hu, J.:
Safe consensus control of cooperative-competitive multi-agent systems via differential privacy. Kybernetika 58 (2022), 426-439.
DOI |
MR 4494099
[24] Ou, M., Sun, H., Zhang, Z., Li, L., Wang, X.:
Fixed-time tracking control for nonholonomic mobile robot. Kybernetika 57 (2021), 220-235.
DOI |
MR 4273573
[25] Polyakov, A.:
Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Automat. Control 57 (2012), 2106-2110.
DOI |
MR 2957184
[26] Tang, Z., Ge, S. S., Tee, K. P., He, W.:
Robust adaptive neural tracking control for a class of perturbed uncertain nonlinear systems with state constraints. IEEE Trans. Syst., Man, Cybern., Syst. 46 (2016), 1618-1629.
DOI |
MR 3191823
[27] Tian, B., Lu, H., Zuo, Z.:
Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dynam. 94 (2018), 2889-2899.
DOI
[28] Wu, Z., Guo, J., Liu, B., Ni, J., Bu, X.:
Composite learning adaptive dynamic surface control for uncertain nonlinear strict-feedback systems with fixed-time parameter estimation under sufficient excitation. Int. J. Robust Nonlinear Control 31 (2021), 5865-5889.
DOI |
MR 4329718
[29] Yang, H., Ye, D.:
Adaptive fault-tolerant fixed-time tracking consensus control for high-order unknown nonlinear multi-agent systems with performance constraint. J. Franklin Inst. 357 (2020), 11448-11471.
DOI |
MR 4160619
[30] Zhang, T., Xia, M., Yi, Y.:
Adaptive neural dynamic surface control of strict-feedback nonlinear systems with full state constraints and unmodeled dynamics. Automatica 81 (2017), 232-239.
DOI |
MR 3654606
[31] Zhao, K., Song, Y.:
Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems. IEEE Trans. Automat. Control 64 (2019), 1265-1272.
DOI |
MR 3922092