[1] Beremlijski, P., Haslinger, J., Kočvara, M., Kučera, R., Outrata, J. V.:
Shape optimization in three-dimensional contact problems with Coulomb friction. SIAM J. Optim. 20 (2009), 416-444.
DOI 10.1137/080714427 |
MR 2507130 |
Zbl 1186.49028
[3] Beremlijski, P., Haslinger, J., Outrata, J. V., Pathó, R.:
Shape optimization in contact problems with Coulomb friction and a solution-dependent friction coefficient. SIAM J. Control Optim. 52 (2014), 3371-3400.
DOI 10.1137/130948070 |
MR 3272620 |
Zbl 1307.49040
[4] Beremlijski, P., Markopoulos, A.:
On solution of 3D contact shape optimization problems with Coulomb friction based on domain decomposition. EngOpt 2014 4th International Conference on Engineering Optimization IDMEC - Instituto de Engenharia Mecanica, Lisboa (2015), 465-470.
DOI 10.1201/b17488-82
[6] Dostál, Z., Kozubek, T., Markopoulos, A., Brzobohatý, T., Vondrák, V., Horyl, P.:
Theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction. Comput. Methods Appl. Mech. Eng. 205-208 (2012), 110-120.
DOI 10.1016/j.cma.2011.02.015 |
MR 2872030 |
Zbl 1239.74064
[8] Farhat, C., Roux, F.-X.:
An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM J. Sci. Stat. Comput. 13 (1992), 379-396.
DOI 10.1137/0913020 |
MR 1145192 |
Zbl 0746.65086
[9] Haslinger, J., Kozubek, T., Kučera, R., Peichl, G.:
Projected Schur complement method for solving non-symmetric systems arising from a smooth fictitious domain approach. Numer. Linear Algebra Appl. 14 (2007), 713-739.
DOI 10.1002/nla.550 |
MR 2361187 |
Zbl 1199.65102
[11] Kučera, R., Motyčková, K., Markopoulos, A., Haslinger, J.:
On the inexact symmetrized globally convergent semi-smooth Newton method for 3D contact problems with Tresca friction: The R-linear convergence rate. Optim. Methods Softw. 35 (2020), 65-86.
DOI 10.1080/10556788.2018.1556659 |
MR 4032941 |
Zbl 07136209
[12] Mordukhovich, B. S.:
Variational Analysis and Generalized Differentiation. I. Basic Theory. Grundlehren der Mathematischen Wissenschaften 330. Springer, Berlin (2006),\99999DOI99999 10.1007/3-540-31247-1 .
MR 2191744 |
Zbl 1100.49002
[15] Myśliński, A.:
Topology optimization of elasto-plastic contact problems. AIP Conf. Proc. 2239 (2020), Article ID 020031, 2 pages.
DOI 10.1063/5.0008122
[16] Outrata, J. V., Kočvara, M., Zowe, J.:
Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results. Nonconvex Optimization and Its Applications 28. Kluwer, Dordrecht (1998).
DOI 10.1007/978-1-4757-2825-5 |
MR 1641213 |
Zbl 0947.90093
[19] Schramm, H., Zowe, J.:
A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2 (1992), 121-152.
DOI 10.1137/0802008 |
MR 1147886 |
Zbl 0761.90090
[20] Sharma, A., Rangarajan, R.:
A shape optimization approach for simulating contact of elastic membranes with rigid obstacles. Int. J. Numer. Methods Eng. 117 (2019), 371-404.
DOI 10.1002/nme.5960 |
MR 3903330
[21] Vondrák, V., Kozubek, T., Markopoulos, A., Dostál, Z.:
Parallel solution of contact shape optimization problems based on total FETI domain decomposition method. Struct. Multidiscip. Optim. 42 (2010), 955-964.
DOI 10.1007/s00158-010-0537-3 |
MR 2735250 |
Zbl 1274.74407