[1] Albert, R., Barabási, A.:
Statistical mechanics of complex networks. Rev. Mod. Phys. 74 (2002), 47-97.
DOI |
MR 1895096
[2] Barabási, A.:
Network science. Phil. Trans. R. Soc. A. 371 (2013), 20120375.
DOI
[3] Barabási, A., Bonabeau, E.:
Scale-free networks. Scientif. Amer. 288 (2003), 60-69.
DOI
[4] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., al., et:
Relational inductive biases, deep learning, and graph networks. ArXiv, 2018.
DOI
[5] Bhagat, S., Cormode, G., Muthukrishnan, S.:
Node classification in social networks. In: Social Network Data Analytics (C. Aggarwal, ed.), Springer, Boston 2011.
DOI |
MR 3014047
[6] Buffelli, D., Vandin, F.:
The impact of global structural information in graph neural networks applications. Data 7 (2022), 10.
DOI
[7] Cetin, P., Amrahov, S. Emrah:
A new overlapping community detection algorithm based on similarity of neighbors in complex networks. Kybernetika 58 (2022), 277-300.
DOI |
MR 4467497
[8] Cetin, P., Amrahov, Ş. E.:
A new network-based community detection algorithm for disjoint communities. Turk. J. Electr. Eng. Co. 30 (2022), 2190-2205.
DOI
[9] Cherifi, H., Palla, G., Szymanski, B. K., Lu, X.:
On community structure in complex networks: challenges and opportunities. Appl. Netw. Sci. 4 (2019), 1-35.
DOI |
MR 3617263
[10] Chi, K., Yin, G., Dong, Y., Dong, H.:
Link prediction in dynamic networks based on the attraction force between nodes. Knowledge-Based Systems 181 (2019), 0950-7051.
DOI
[11] Fortunato, S.:
Community detection in graphs. Phys. Rep. 486 (2010), 75-174.
DOI |
MR 2580414
[12] Giles, C. L., Bollacker, K. D., Lawrence, S.: CiteSeer: An automatic citation indexing system. In: Proc. Third ACM conference on Digital libraries, 1998, pp. 89-98.
[13] Girvan, M., Newman, M. E. J.:
Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99 (2002), 7821-7826.
DOI |
MR 1908073
[14] Grover, A., Leskovec, J.:
node2vec: Scalable feature learning for networks. In: Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York 2016, pp. 855-864.
DOI
[15] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach 2017.
[16] Han, X., Wang, L., Cui, C., Ma, J., Zhang, S.:
Linking multiple online identities in criminal investigations: A spectral co-clustering framework. IEEE Trans. Inf. Forensics Security 12 (2017), 2242-2255.
DOI
[17] Hanley, J. A., McNeil, B. J.:
The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982), 29-36.
DOI
[18] Ivanov, S., Burnaev, E.: Anonymous walk embeddings. In: Proc. 35th International Conference on Machine Learning, 2018, pp. 2186-2195.
[19] Khafaei, T., Taraghi, A. Tavakoli, Hosseinzadeh, M., Rezaee, A.:
Tracing temporal communities and event prediction in dynamic social networks. Soc. Netw. Anal. Min. 9 (2019), 1-11.
DOI
[21] Kossinets, G., Watts, D. J.:
Empirical analysis of an evolving social network. Science 311 (2006), 88-90.
DOI |
MR 2192483
[22] Lancichinetti, A., Fortunato, S., Radicchi, F.:
Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78 (2008), 046110.
DOI
[23] Liben-Nowell, D., Kleinberg, J.:
The link-prediction problem for social networks. In: Proc. twelfth international conference on Information and knowledge management, New Orleans 2003, pp. 556-559.
DOI
[24] Martínez, V., Berzal, F., Cubero, J.:
A survey of link prediction in complex networks. ACM Comput. Surv. 49 (2016), 1-33.
DOI |
MR 3431093
[25] McCallum, A. K., Nigam, K., Rennie, J., Seymore, K.:
Automating the construction of internet portals with machine learning. Inform, Retrieval 3 (2000), 127-163.
DOI
[26] Mele, A.:
A structural model of homophily and clustering in social networks. J. Bus. Econom. Statist. 40 (2022), 1377-1389.
DOI |
MR 4439296
[27] Micali, S., Zhu, Z. A.:
Reconstructing markov processes from independent and anonymous experiments. Discrete Appl. Math. 200 (2016), 108-122.
DOI |
MR 3442578
[28] Mohammed, S. N., Gündüç, S.:
Degree-based random walk approach for graph embedding. Turk. J. Electr. Eng. Co. 30 (2022), 1868-1881.
DOI
[29] Molokwu, B., Shuvo, S. B., Kar, N. C., Kobti, Z.:
Node classification and link prediction in social graphs using RLVECN. In: 32nd International Conference on Scientific and Statistical Database Management, Vienna 2020, pp. 1-10.
DOI
[30] Palla, G., Derényi, I., Farkas, I., Vicsek, T.:
Uncovering the overlapping community structure of complex networks in nature and society. Nature 435 (2005), 814-818.
DOI
[31] Pavlopoulou, M. E. G., Tzortzis, G., Vogiatzis, D., Paliouras, G.:
Predicting the evolution of communities in social networks using structural and temporal features. In: 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Bratislava 2017, pp. 40-45.
DOI
[32] Perozzi, B., Al-Rfou, R., Skiena, S.:
Deepwalk: Online learning of social representations. In: Proc. 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York 2014, pp. 701-710.
DOI
[33] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.:
Collective classification in network data. AI Magazine 29 (2008), 93-93.
DOI
[34] Sun, K., Wang, L., Xu, B., Zhao, W., Teng, S. W., Xia, F.:
Network representation learning: From traditional feature learning to deep learning. IEEE Access 8 (2020), 205600-205617.
DOI
[35] Tamassia, R.:
Handbook of Graph Drawing and Visualization. (First edition. Chapman and Hall/CRC, New York 2013.
DOI |
MR 3156770
[36] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.:
Line: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 2015, pp. 1067-1077.
DOI
[37] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. Stat. 20 (2017), 10-48550.
[38] Vencálek, O., Hlubinka, D.:
A depth-based modification of the k-nearest neighbour method. Kybernetika 57 (2021), 15-37.
DOI |
MR 4231854
[39] Xie, Y., Jin, P., Gong, M., Zhang, C., Yu, B.:
Multi-task network representation learning. Front. Neurosci. 14 (2020), 1.
DOI |
MR 4495032
[40] Xu, M.:
Understanding graph embedding methods and their applications. SIAM Rev. 63 (2021), 825-853.
DOI |
MR 4334532
[41] Zaki, M. J., Meira, W.: Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
[42] Zhang, Z., Cui, P., Zhu, W.:
Deep learning on graphs: A survey. IEEE Trans. Knowl. Data Eng. 34 (2020), 249-270.
DOI
[43] Zhang, X. M., Liang, L., Liu, L., Tang, M. J.:
Graph neural networks and their current applications in bioinformatics. Front, Genetics 12 (2021), 690049.
DOI