Previous |  Up |  Next

Article

Keywords:
multiquadratic number field; unit group; fundamental system of units
Summary:
Let $p\equiv 1\pmod {8}$ and $q\equiv 3\pmod 8$ be two prime integers and let $\ell \not \in \{-1, p, q\}$ be a positive odd square-free integer. Assuming that the fundamental unit of $\mathbb {Q}\big (\sqrt {2p}\big ) $ has a negative norm, we investigate the unit group of the fields $\mathbb {Q}\big (\sqrt 2, \sqrt {p}, \sqrt {q}, \sqrt {-\ell } \big )$.
References:
[1] Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb{Q}$. Ann. Sci. Math. Qué. 23 (1999), 15-21 French. MR 1721726 | Zbl 1041.11072
[2] Chems-Eddin, M. M.: Arithmetic of some real triquadratic fields: Units and 2-class groups. Available at https://arxiv.org/abs/2108.04171v1 (2021), 32 pages.
[3] Chems-Eddin, M. M.: Unit groups of some multiquadratic number fields and 2-class groups. Period. Math. Hung. 84 (2022), 235-249. DOI 10.1007/s10998-021-00402-0 | MR 4423478
[4] Chems-Eddin, M. M., Azizi, A., Zekhnini, A.: Unit groups and Iwasawa lambda invariants of some multiquadratic number fields. Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 24, 16 pages. DOI 10.1007/s40590-021-00329-z | MR 4220815 | Zbl 07342807
[5] Chems-Eddin, M. M., Zekhnini, A., Azizi, A.: Units and 2-class field towers of some multiquadratic number fields. Turk. J. Math. 44 (2020), 1466-1483. DOI 10.3906/mat-2003-117 | MR 4122918 | Zbl 1455.11140
[6] Kubota, T.: Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J. 10 (1956), 65-85 German. DOI 10.1017/S0027763000000088 | MR 0083009 | Zbl 0074.03001
[7] Varmon, J.: Über Abelsche Körper, deren alle Gruppeninvarianten aus einer Primzahl bestehen, und über Abelsche Körper als Kreiskörper. Hakan Ohlssons Boktryckeri, Lund (1925), German \99999JFM99999 51.0123.05.
[8] Wada, H.: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci, Univ. Tokyo, Sect. I 13 (1966), 201-209 \99999MR99999 0214565 . MR 0214565 | Zbl 0158.30103
Partner of
EuDML logo