[1] Abelman, S., Selvakumaran, K. A., Rashidi, M. M., Purohit, S. D.:
Subordination conditions for a class of non-Bazilević type defined by using fractional $q$-calculus operators. Facta Univ., Ser. Math. Inf. 32 (2017), 255-267.
DOI 10.22190/FUMI1702255A |
MR 3651242 |
Zbl 07342522
[6] Cătaş, A.: On certain classes of $p$-valent functions defined by multiplier transformations. Proceedings of the International Symposium on Geometric Function Theory and Applications S. Owa, Y. Polatoglu Istanbul Kültür University Publications, Istanbul (2007), 241-250.
[8] Duren, P. L.:
Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983).
MR 0708494 |
Zbl 0514.30001
[10] Gasper, G., Rahman, M.:
Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 35. Cambridge University Press, Cambridge (1990).
MR 1052153 |
Zbl 0695.33001
[13] Jackson, F. H.: On $q$-definite integrals. Quart. J. 41 (1910), 193-203 \99999JFM99999 41.0317.04.
[17] Owa, S., Nishiwaki, J.:
Coefficient estimates for certain classes of analytic functions. JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Article ID 72, 5 pages.
MR 1966507 |
Zbl 1033.30013
[20] Sălăgean, G. S.:
Subclasses of univalent functions. Complex Analysis - Fifth Romanian-Finnish Seminar. Part 1 Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372.
DOI 10.1007/BFb0066543 |
MR 0738107 |
Zbl 0531.30009
[23] Silverman, H.:
Integral means for univalent functions with negative coefficients. Houston J. Math. 23 (1997), 169-174.
MR 1688819 |
Zbl 0889.30010
[24] Srivastava, H. M.:
Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol., Trans. A, Sci. 44 (2020), 327-344.
DOI 10.1007/s40995-019-00815-0 |
MR 4064730
[25] Srivastava, H. M., Attiya, A. A.:
Some subordination results associated with certain subclasses of analytic functions. JIPAM, J. Inequal. Pure Appl. Math. 5 (2004), Article ID 82, 6 pages.
MR 2112435 |
Zbl 1059.30021