Keywords: amalgamation of ring; amalgamation of module; Cohen-Macaulay; injective module; projective(flat) module
Summary: Let $R$ and $S$ be commutative rings with identity, $J$ be an ideal of $S$, $f \colon R \to S$ be a ring homomorphism, $M$ be an $R$-module, $N$ be an $S$-module, and let $\varphi \colon M \to N$ be an $R$-homomorphism. The amalgamation of $R$ with $S$ along $J$ with respect to $f$ denoted by $R \bowtie ^{f} J$ was introduced by M. D'Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of $(R \bowtie ^{f} J)$-module called the amalgamation of $M$ and $N$ along $J$ with respect to $\varphi $, and denoted by $M \bowtie ^{\varphi } JN$. We study some homological properties of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$. Among other results, we investigate projectivity, flatness, injectivity, Cohen-Macaulayness, and prime property of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$ in connection to their corresponding properties of the $R$-modules $M$ and $JN$.
[2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[4] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal. Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 155-172. DOI 10.1515/9783110213188.155 | MR 2606283 | Zbl 1177.13043
[5] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641. DOI 10.1016/j.jpaa.2009.12.008 | MR 2593689 | Zbl 1191.13006
[8] Khalfaoui, R. El, Mahdou, N., Sahandi, P., Shirmohammadi, N.: Amalgamated modules along an ideal. Commun. Korean Math. Soc. 36 (2021), 1-10. DOI 10.4134/CKMS.c200064 | MR 4215837 | Zbl 1467.13026
[11] Salimi, M., Tavasoli, E., Yassemi, S.: The amalgamated duplication of a ring along a semidualizing ideal. Rend. Semin. Mat. Univ. Padova 129 (2013), 115-127. DOI 10.4171/RSMUP/129-8 | MR 3090634 | Zbl 1279.13025