Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
primary ideal; weakly primary ideal; quasi-primary ideal; weakly 2-prime ideal; strongly quasi-primary ideal
Summary:
We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity and $Q$ a proper ideal of $R$. The proper ideal $Q$ is said to be a weakly strongly quasi-primary ideal if whenever $0\neq ab\in Q$ for some $a,b\in R$, then $a^{2}\in Q$ or $b\in \sqrt {Q}.$ Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals.
References:
[1] Almahdi, F. A. A., Tamekkante, M., Mamouni, A.: Rings over which every semi-primary ideal is 1-absorbing primary. Commun. Algebra 48 (2020), 3838-3845. DOI 10.1080/00927872.2020.1749645 | MR 4124662 | Zbl 1451.13007
[2] Anderson, D. F., (eds.), D. E. Dobbs: Zero-Dimensional Commutative Rings. Lecture Notes in Pure and Applied Mathematics. 171. Marcel Dekker, New York (1995). MR 1335699 | Zbl 0872.00033
[3] Anderson, D. D., Smith, E.: Weakly prime ideals. Houston J. Math. 29 (2003), 831-840. MR 2045656 | Zbl 1086.13500
[4] Anderson, D. D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381 | Zbl 1194.13002
[5] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969). MR 0242802 | Zbl 0175.03601
[6] Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (2007), 417-429. DOI 10.1017/S0004972700039344 | MR 2331019 | Zbl 1120.13004
[7] Badawi, A., Sonmez, D., Yesilot, G.: On weakly $\delta$-semiprimary ideals of commutative rings. Algebra Colloq. 25 (2018), 387-398. DOI 10.1142/S1005386718000287 | MR 3843092 | Zbl 1401.13007
[8] Badawi, A., Tekir, U., Yetkin, E.: On weakly 2-absorbing primary ideals of commutative rings. J. Korean Math. Soc. 52 (2015), 97-111. DOI 10.4134/JKMS.2015.52.1.097 | MR 3299372 | Zbl 1315.13008
[9] Beddani, C., Messirdi, W.: 2-prime ideals and their applications. J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. DOI 10.1142/S0219498816500511 | MR 3454713 | Zbl 1338.13038
[10] Călugăreanu, G.: $UN$-rings. J. Algebra Appl. 15 (2016), Article ID 1650182, 9 pages. DOI 10.1142/S0219498816501826 | MR 3575972 | Zbl 1397.16037
[11] Chen, J.: Infinite prime avoidance. Beitr. Algebra Geom. 62 (2021), 587-593. DOI 10.1007/s13366-020-00507-6 | MR 4290331 | Zbl 1472.13004
[12] Atani, S. Ebrahimi, Farzalipour, F.: On weakly primary ideals. Georgian Math. J. 12 (2005), 423-429. DOI 10.1515/GMJ.2005.423 | MR 2174944 | Zbl 1086.13501
[13] Huckaba, J. A.: Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). MR 0938741 | Zbl 0637.13001
[14] Koç, S.: On weakly 2-prime ideals in commutative rings. Commun. Algebra 49 (2021), 3387-3397. DOI 10.1080/00927872.2021.1897133 | MR 4283155 | Zbl 1470.13004
[15] Koc, S., Tekir, U., Ulucak, G.: On strongly quasi primary ideals. Bull. Korean Math. Soc. 56 (2019), 729-743. DOI 10.4134/BKMS.b180522 | MR 3960633 | Zbl 1419.13040
[16] Larsen, M. D., McCarthy, P. J.: Multiplicative Theory of Ideals. Pure and Applied Mathematics 43. Academic Press, New York (1971). MR 0414528 | Zbl 0237.13002
[17] Lee, T.-K., Zhou, Y.: Reduced modules. Rings, Modules, Algebras and Abelian Groups Lecture Notes in Pure and Applied Mathematics 236. Marcel Dekker, New York (2004), 365-377. MR 2050725 | Zbl 1075.16003
[18] Pakala, J. V., Shores, T. S.: On compactly packed rings. Pac. J. Math. 97 (1981), 197-201. DOI 10.2140/pjm.1981.97.197 | MR 0638188 | Zbl 0491.13002
[19] Redmond, S. P.: An ideal-based zero-divisor graph of a commutative ring. Commun. Algebra 31 (2003), 4425-4443. DOI 10.1081/AGB-120022801 | MR 1995544 | Zbl 1020.13001
[20] Satyanarayana, M.: Rings with primary ideals as maximal ideals. Math. Scand. 20 (1967), 52-54. DOI 10.7146/math.scand.a-10818 | MR 0212005 | Zbl 0146.26204
[21] Neumann, J. von: On regular rings. Proc. Natl. Acad. Sci. USA 22 (1936), 707-713. DOI 10.1073/pnas.22.12.70 | Zbl 0015.38802
[22] Wang, F., Kim, H.: Foundations of Commutative Rings and Their Modules. Algebra and Applications 22. Springer, Singapore (2016). DOI 10.1007/978-981-10-3337-7 | MR 3587977 | Zbl 1367.13001
[23] z, E. Yıldı, Ersoy, B. A., Tekir, Ü., Koç, S.: On $S$-Zariski topology. Commun. Algebra 49 (2021), 1212-1224. DOI 10.1080/00927872.2020.1831006 | MR 4219872 | Zbl 1477.13012
Partner of
EuDML logo