[5] Bourgain J.:
New Classes of $\mathcal{L}_p$-Spaces. Lecture Notes in Mathematics, 889, Springer, Berlin, 1981.
MR 0639014
[7] Carrión H., Galindo P., Laurenço M. L.:
A stronger Dunford–Pettis property. Studia Math. 184 (2008), no. 3, 205–216.
DOI 10.4064/sm184-3-1 |
MR 2369139
[8] Castillo J. M. F., Sánchez F.:
Dunford–Pettis-like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59.
MR 1245024
[9] Cembranos P.:
$C(K,E)$ contains a complemented copy of $c_0$. Proc. Amer. Math Soc. 91 (1984), no. 4, 556–558.
MR 0746089
[10] Cilia R., Emmanuele G.:
Some isomorphic properties in $K(X, Y)$ and in projective tensor products. Colloq. Math. 146 (2017), no. 2, 239–252.
DOI 10.4064/cm6184-12-2015 |
MR 3622375
[11] Diestel J.:
A survey of results related to the Dunford–Pettis property. Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pages 15–60.
MR 0621850
[12] Diestel J.:
Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, New York, 1984.
MR 0737004
[13] Diestel J., Jarchow H., Tonge A.:
Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
MR 1342297 |
Zbl 1139.47021
[14] Diestel J., Uhl J. J., Jr.:
Vector Measures. Mathematical Surveys, 15, American Mathematical Society, Providence, 1977.
MR 0453964 |
Zbl 0521.46035
[18] Ghenciu I.:
Property (wL) and the reciprocal Dunford–Pettis property in projective tensor products. Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329.
MR 3390279
[19] Ghenciu I.:
A note on some isomorphic properties in projective tensor products. Extracta Math. 32 (2017), no. 1, 1–24.
MR 3726522
[24] Kačena M.:
On sequentially Right Banach spaces. Extracta Math. 26 (2011), no. 1, 1–27.
MR 2908388
[25] Pełczyński A.:
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
MR 0149295 |
Zbl 0107.32504
[26] Pełczyński A., Semadeni Z.:
Spaces of continuous functions. III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets. Studia Math. 18 (1959), 211–222.
DOI 10.4064/sm-18-2-211-222 |
MR 0107806
[27] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.:
Topological characterization of weakly compact operators. J. Math. Anal. Appl. 325 (2007), no. 2, 968–974.
DOI 10.1016/j.jmaa.2006.02.066 |
MR 2270063
[28] Rosenthal H. P.:
Point-wise compact subsets of the first Baire class. Amer. J. Math. 99 (1977), no. 2, 362–377.
DOI 10.2307/2373824 |
MR 0438113
[29] Ryan R. A.:
Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics, Springer, London, 2002.
MR 1888309 |
Zbl 1090.46001
[30] Salimi M., Moshtaghioun S. M.:
The Gelfand–Phillips property in closed subspaces of some operator spaces. Banach J. Math. Anal. 5 (2011), no. 2, 84–92.
DOI 10.15352/bjma/1313363004 |
MR 2792501
[31] Salimi M., Moshtaghioun S. M.:
A new class of Banach spaces and its relation with some geometric properties of Banach spaces. Hindawi Publishing Corporation, Abstr. Appl. Anal. (2012), Article ID 212957, 8 pages.
MR 2910729
[32] Schlumprecht T.: Limited Sets in Banach Spaces. Ph.D. Dissertation, Ludwigs-Maxmilians-Universität, Münich, 1987.
[33] Wen Y., Chen J.:
Characterizations of Banach spaces with relatively compact Dunford–Pettis sets. Adv. Math. (China) 45 (2016), no. 1, 122–132.
MR 3483491
[34] Wojtaszczyk P.:
Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991.
MR 1144277