[1] Akhlaghi Z., Khosravi B., Khatami M.:
Characterization by prime graph of $ PGL(2,p^{k})$ where $p$ and $k>1$ are odd. Internat. J. Algebra Comput. 20 (2010), no. 7, 847–873.
DOI 10.1142/S021819671000587X |
MR 2738548
[2] Aleeva M. R.:
On composition factors of finite groups having the same set of element orders as the group $U_3(q)$. Sibirsk. Mat. Zh. 43 (2002), no. 2, 249–267 (Russian); translation in Siberian Math. J. 43 (2002), no. 2, 195–211.
MR 1902821
[4] Buturlakin A. A.:
Spectra of finite linear and unitary groups. Algebra Logika 47 (2008), no. 2, 157–173, 264 (Russian); translation in Algebra Logic 47 (2008), no. 2, 91–99.
DOI 10.1007/s10469-008-9003-3 |
MR 2438007
[5] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A.:
Atlas of Finite Groups. Clarendon Press (Oxford), London, 1985.
MR 0827219 |
Zbl 0568.20001
[6] Darafsheh M. R., Farjami Y., Sadrudini A.:
A characterization property of the simple group $ PSL_4(5)$ by the set of its element orders. Arch. Math. (Brno) 43 (2007), no. 1, 31–37.
MR 2310122
[8] Khatami M., Khosravi B., Akhlaghi Z.:
NCF-distinguishability by prime graph of $PGL(2, p)$, where $p$ is a prime. Rocky Mountain J. Math. 41 (2011), no. 5, 1523–1545.
DOI 10.1216/RMJ-2011-41-5-1523 |
MR 2838076
[9] Kleidman P. B., Liebeck M. W.:
The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge, 1990.
MR 1057341
[10] Lucido M. S.:
Prime graph components of finite almost simple groups. Rend. Sem. Mat. Univ. Padova 102 (1999), 1–22.
MR 1739529
[11] Mahmoudifar A.:
On finite groups with the same prime graph as the projective general linear group $PGL(2, 81)$. Transactions on Algebra and Its Applications 2 (2016), 43–49.
MR 3746331
[12] Mahmoudifar A.:
On the unrecognizability by prime graph for the almost simple group $ PGL(2, 9)$. Discuss. Math. Gen. Algebra Appl. 36 (2016), no. 2, 223–228.
DOI 10.7151/dmgaa.1256 |
MR 3594963
[13] Mahmoudifar A.:
Recognition by prime graph of the almost simple group $ PGL(2, 25)$. J. Linear. Topol. Algebra 5 (2016), no. 1, 63–66.
MR 3569945
[14] Mazurov V. D.:
Characterization of finite groups by sets of orders of their elements. Algebra i Logika 36 (1997), no. 1, 37–53, 117 (Russian); translation in Algebra and Logic 36 (1997), no. 1, 23–32.
MR 1454690
[15] Passman D. S.:
Permutation Groups. W. A. Benjamin, New York, 1968.
MR 0237627
[16] Perumal P.: On the Theory of the Frobenius Groups. Ph.D. Dissertation, University of Kwa-Zulu Natal, Pietermaritzburg, 2012.
[18] Sajjadi M., Bibak M., Rezaeezadeh G. R.:
Characterization of some projective special linear groups in dimension four by their orders and degree patterns. Bull. Iranian Math. Soc. 42 (2016), no. 1, 27–36.
MR 3470934
[19] Shi W. J.:
On simple K$4$-groups. Chinese Sci. Bull. 36 (1991), no. 7, 1281–1283 (Chinese).
MR 1150578
[20] Simpson W. A., Frame J. S.:
The character tables for $ SL(3, q)$, $ SL(3, q^2)$, $ PSL(3, q)$, $ PSU(3, q^2)$. Canadian. J. Math. 25 (1973), no. 3, 486–494.
MR 0335618
[21] Srinivasan B.:
The characters of the finite symplectic group $ Sp(4,q)$. Trans. Am. Math. Soc. 131 (1968), no. 2, 488–525.
MR 0220845
[22] Vasil'ev A. V., Grechkoseeva M. A.:
On recognition by spectrum of finite simple linear groups over fields of characteristic $2$. Sibirsk. Mat. Zh. 46 (2005), no. 4, 749–758 (Russian); translation in Siberian Math. J. 46 (2005), no. 4, 593–600.
MR 2169394
[24] Yang N., Grechkoseeva M. A., Vasil'ev A. V.:
On the nilpotency of the solvable radical of a finite group isospectral to a simple group. J. Group Theory 23 (2020), no. 3, 447–470.
DOI 10.1515/jgth-2019-0109 |
MR 4092939
[25] Zavarnitsine A. V.:
Finite simple groups with narrow prime spectrum. Sib. Èlektron. Mat. Izv. 6 (2009), 1–12.
MR 2586673 |
Zbl 1289.20021
[26] Zavarnitsine A. V.:
Fixed points of large prime-order elements in the equicharacteristic action of linear and unitary groups. Sib. Èlektron. Mat. Izv. 8 (2011), 333–340.
MR 2876551
[27] Zavarnitsine A. V., Mazurov V. D.:
Element orders in coverings of symmetric and alternating groups. Algebra Log. 38 (1999), no. 3, 296–315, 378 (Russian); translation in Algebra and Logic 38 (1999), no. 3, 159–170.
MR 1766731
[28] HASH(0x126bfa8):
The GAP Group, GAP – Groups, Algorithms, and Programming, Version $4.11.1$. 2021,
https://www.gap-system.org