[2] Bensoussan, A., Lions, J. L., Papanicolaou, G.:
Perturbations et ``augmentation'' des conditions initiales. Singular Perturbations and Boundary Layer Theory Lecture Notes in Mathematics 594. Springer, Berlin (1977), 10-29.
MR 0460848 |
Zbl 0362.35005
[3] Cioranescu, D., Donato, P.:
An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, Oxford (1999).
MR 1765047 |
Zbl 0939.35001
[6] Douanla, A., Tetsadjio, E.:
Reiterated homogenization of hyperbolic-parabolic equations in domains with tiny holes. Electron. J. Differ. Equ. 2017 (2017), Article ID 59, 22 pages.
MR 3625939 |
Zbl 1370.35038
[7] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.:
Homogenization of parabolic equations with an arbitrary number of scales in both space and time. J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages.
DOI 10.1155/2014/101685 |
MR 3176810 |
Zbl 1406.35140
[8] Flodén, L., Persson, J.:
Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Netw. Heterog.s Media 11 (2016), 627-653.
DOI 10.3934/nhm.2016012 |
MR 3577222 |
Zbl 1356.35030
[10] Migórski, S.:
Homogenization of hyperbolic-parabolic equations in perforated domains. Univ. Iagell. Acta Math. 33 (1996), 59-72.
MR 1422438 |
Zbl 0880.35016
[14] Yassine, H.:
Well-posedness and asymptotic behavior of a nonautonomous, semilinear hyperbolic-parabolic equation with dynamical boundary condition of memory type. J. Integral Equations Appl. 25 (2013), 517-555.
DOI 10.1216/JIE-2013-25-4-517 |
MR 3161624 |
Zbl 1286.35042