Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
nonlinear hyperbolic-parabolic equation; homogenization; multiscale convergence method
Summary:
The main purpose of the present paper is to study the asymptotic behavior (when $\varepsilon \to 0$) of the solution related to a nonlinear hyperbolic-parabolic problem given in a periodically heterogeneous domain with multiple spatial scales and one temporal scale. Under certain assumptions on the problem's coefficients and based on a priori estimates and compactness results, we establish homogenization results by using the multiscale convergence method.
References:
[1] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. DOI 10.1017/S0308210500022757 | MR 1386865 | Zbl 0866.35017
[2] Bensoussan, A., Lions, J. L., Papanicolaou, G.: Perturbations et ``augmentation'' des conditions initiales. Singular Perturbations and Boundary Layer Theory Lecture Notes in Mathematics 594. Springer, Berlin (1977), 10-29. MR 0460848 | Zbl 0362.35005
[3] Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, Oxford (1999). MR 1765047 | Zbl 0939.35001
[4] Clark, M. R.: Existence of weak solutions for abstract hyperbolic-parabolic equations. Int. J. Math. Math. Sci. 17 (1994), 759-769. DOI 10.1155/S0161171294001067 | MR 1298800 | Zbl 0813.35046
[5] Lima, O. A. de: Existence and uniqueness of solutions for an abstract nonlinear hyperbolic-parabolic equation. Appl. Anal. 24 (1987), 101-116. DOI 10.1080/00036818708839657 | MR 0904737 | Zbl 0589.35063
[6] Douanla, A., Tetsadjio, E.: Reiterated homogenization of hyperbolic-parabolic equations in domains with tiny holes. Electron. J. Differ. Equ. 2017 (2017), Article ID 59, 22 pages. MR 3625939 | Zbl 1370.35038
[7] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Homogenization of parabolic equations with an arbitrary number of scales in both space and time. J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. DOI 10.1155/2014/101685 | MR 3176810 | Zbl 1406.35140
[8] Flodén, L., Persson, J.: Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Netw. Heterog.s Media 11 (2016), 627-653. DOI 10.3934/nhm.2016012 | MR 3577222 | Zbl 1356.35030
[9] Holmbom, A., Svanstedt, N., Wellander, N.: Multiscale convergence and reiterated homogenization of parabolic problems. Appl. Math., Praha 50 (2005), 131-151. DOI 10.1007/s10492-005-0009-z | MR 2125155 | Zbl 1099.35011
[10] Migórski, S.: Homogenization of hyperbolic-parabolic equations in perforated domains. Univ. Iagell. Acta Math. 33 (1996), 59-72. MR 1422438 | Zbl 0880.35016
[11] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[12] Persson, J.: Homogenization of monotone parabolic problems with several temporal scales. Appl. Math., Praha 57 (2012), 191-214. DOI 10.1007/s10492-012-0013-z | MR 2984600 | Zbl 1265.35018
[13] Yang, Z., Zhao, X.: A note on homogenization of the hyperbolic-parabolic equations in domains with holes. J. Math. Res. Appl. 36 (2016), 485-494. DOI 10.3770/j.issn:2095-2651.2016.04.011 | MR 3559015 | Zbl 1374.35045
[14] Yassine, H.: Well-posedness and asymptotic behavior of a nonautonomous, semilinear hyperbolic-parabolic equation with dynamical boundary condition of memory type. J. Integral Equations Appl. 25 (2013), 517-555. DOI 10.1216/JIE-2013-25-4-517 | MR 3161624 | Zbl 1286.35042
Partner of
EuDML logo