Previous |  Up |  Next

Article

Keywords:
quasilinear equation; positive solution; a priori bound
Summary:
We consider the quasilinear equation $\Delta _p u +K(|x|)u^q=0$, and present the proof of the local existence of positive radial solutions near $0$ under suitable conditions on $K$. Moreover, we provide a priori estimates of positive radial solutions near $\infty $ when $r^{-\ell }K(r)$ for $\ell \ge -p$ is bounded near $\infty $.
References:
[1] Bidaut-Véron, M.-F., Pohozaev, S.: Nonexistence results and estimates for some nonlinear elliptic problems. J. Anal. Math. 84 (2001), 1–49. DOI 10.1007/BF02788105 | MR 1849197
[2] Kawano, N., Ni, W.-M., Yotsutani, S.: A generalized Pohozaev identity and its applications. J. Math. Soc. Japan 42 (1990), 541–564. DOI 10.2969/jmsj/04230541
[3] Kawano, N., Yanagida, E., Yotsutani, S.: Structure theorems for positive radial solutions to ${\rm div} (|D u|^{m-2}D u) + K(|x|)u^q=0$ in ${\bf R}^n$. J. Math. Soc. Japan 45 (1993), 719–742.
[4] Li, Y., Ni, W.-M.: On conformal scalar curvature equation in ${\bf R}^n$. Duke Math. J. 57 (1988), 895–924.
[5] Ni, W.-M., Serrin, J.: Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case. Atti Convegni Lincei 77 (1986), 231–257.
[6] Serrin, J., Zou, H.: Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math. 189 (2002), 79–142. DOI 10.1007/BF02392645 | MR 1946918
Partner of
EuDML logo