Previous |  Up |  Next

Article

Keywords:
advance-delay differential equation; mixed-type differential equation; asymptotic behaviour; existence of solutions
Summary:
The paper considers a scalar differential equation of an advance-delay type \begin{equation*} \dot{y}(t)= -\left(a_0+\frac{a_1}{t}\right)y(t-\tau )+\left(b_0+\frac{b_1}{t}\right)y(t+\sigma )\,, \end{equation*} where constants $a_0$, $b_0$, $\tau $ and $\sigma $ are positive, and $a_1$ and $b_1$ are arbitrary. The behavior of its solutions for $t\rightarrow \infty $ is analyzed provided that the transcendental equation \begin{equation*} \lambda = -a_0\mathrm{e}^{-\lambda \tau }+b_0\mathrm{e}^{\lambda \sigma } \end{equation*} has a positive real root. An exponential-type function approximating the solution is searched for to be used in proving the existence of a semi-global solution. Moreover, the lower and upper estimates are given for such a solution.
References:
[1] Agarwal, R.P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, 2012. MR 2908263 | Zbl 1253.34002
[2] Diblík, J., Kúdelčíková, M.: Nonoscillating solutions of the equation $\dot{x}(t)=-(a+b/t)x(t-\tau )$. Stud. Univ. Žilina Math. Ser. 15 (1) (2002), 11–24. MR 1980759
[3] Diblík, J., Kúdelčíková, M.: Inequalities for positive solutions of the equation $\dot{y}(t) = - (a_0 + a_1/t) x(t - \tau _1) - (b_0 + b_1/t) x(t - \tau _2)$. Stud. Univ. Žilina Math. Ser. 17 (1) (2003), 27–46. MR 2064976
[4] Diblík, J., Kúdelčíková, M.: Inequalities for the positive solutions of the equation $\dot{y}(t) = -\sum _{i=1}^{n}(a_i + b_i/t)y(t - \tau _i)$. Differential and Difference Equations and Applications (2006), 341–350, Hindawi Publ. Corp., New York. MR 2307355
[5] Diblík, J., Svoboda, Z.: Positive solutions of $p$-type retarded functional differential equations. Nonlinear Anal. 64 (8) (2006), 1831–1848. DOI 10.1016/j.na.2005.07.020 | MR 2197363
[6] Diblík, J., Vážanová, G.: Lower and upper estimates of semi-global and global solutions to mixed-type functional differential equations. Adv. Nonlinear Anal. 11 (1) (2022), 757–784. DOI 10.1515/anona-2021-0218 | MR 4379603
[7] Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations. Clarendon Press, Oxford, 1991.
[8] Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer-Verlag, 1993. Zbl 0787.34002
[9] Pinelas, S.: Asymptotic behavior of solutions to mixed type differential equations. Electron. J. Differential Equations 2014 (210) (2014), 1–9. MR 3273093
[10] Pituk, M.: The Hartman-Wintner theorem for functional-differential equations. J. Differential Equations 155 (1) (1999), 1–16. DOI 10.1006/jdeq.1998.3573
[11] Zeidler, E.: Nonlinear Functional Analysis and its Application, Part I, Fixed-Point Theorems. Springer-Verlag, 1985.
Partner of
EuDML logo