Previous |  Up |  Next

Article

Keywords:
Riemann-Liouville derivative; unique solvability; differential inequality
Summary:
We propose explicit tests of unique solvability of two-point and focal boundary value problems for fractional functional differential equations with Riemann-Liouville derivative.
References:
[1] Agarwal, R.P., Bohner, M., Özbekler, A.: Lyapunov Inequalities and Applications. Springer, Berlin, 2021. MR 4260282
[2] Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F.: Introduction to the Theory of Functional Differential Equations. Hindawi Publishing, 2007. MR 2319815
[3] Benmezai, A., Saadi, A.: Existence of positive solutions for a nonlinear fractional differential equations with integral boundary conditions. J. Fract. Calc. Appl. 7 (2) (2016), 145–152. MR 3481772
[4] Domoshnitsky, A., Padhi, S., Srivastava, S.N.: Vallée-Poussin theorem for fractional functional differential equations. Fract. Calc. Appl. Anal. 25 (2022), 1630–1650, https://doi.org/10.1007/s13540-022-00061-z DOI 10.1007/s13540-022-00061-z | MR 4468528
[5] Ferreira, R.: A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16 (4) (2013), 978–984, https://doi.org/10.2478/s13540-013-0060-5 DOI 10.2478/s13540-013-0060-5 | MR 3124347
[6] Ferreira, R.A.: Existence and uniqueness of solutions for two-point fractional boundary value problems. Electron. J. Differential Equations 202 (5) (2016). MR 3547391
[7] Henderson, J., Luca, R.: Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions. Academic Press, 2015. MR 3430818
[8] Henderson, J., Luca, R.: Nonexistence of positive solutions for a system of coupled fractional boundary value problems. Bound. Value Probl. 2015 (1) (2015), 1–12. MR 3382857
[9] Henderson, J., Luca, R.: Positive solutions for a system of semipositone coupled fractional boundary value problems. Bound. Value Probl. 2016 (1) (2016), 1–23. MR 3471318
[10] Jankowski, T.: Positive solutions to fractional differential equations involving Stieltjes integral conditions. Appl. Math. Comput. 241 (2014), 200–213. DOI 10.1016/j.amc.2014.04.080 | MR 3223422
[11] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, 2006. MR 2218073 | Zbl 1092.45003
[12] Krasnosel’skii, M.A., Vainikko, G.M., Zabreyko, R.P., Ruticki, Y.B., Stet’senko, V.V.: Approximate Solution of Operator Equations. Springer Science & Business Media, 2012.
[13] Padhi, S., Graef, J.R., Pati, S.: Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions. Fract. Calc. Appl. Anal. 21 (3) (2018), 716–745, https://doi.org/10.1515/fca-2018-0038 DOI 10.1515/fca-2018-0038 | MR 3827151
[14] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. Zbl 0924.34008
[15] Qiao, Y., Zhou, Z.: Existence of positive solutions of singular fractional differential equations with infinite-point boundary conditions. Adv. Difference Equations 2017 (1) (2017), 1–9. MR 3594502
Partner of
EuDML logo