Previous |  Up |  Next

Article

Keywords:
second-order differential inclusion; nonlocal conditions; Banach spaces; cosine family; approximation solvability method; mild solution
Summary:
We study the existence of a mild solution to the nonlocal initial value problem for semilinear second-order differential inclusions in abstract spaces. The result is obtained by combining the Kakutani fixed point theorem with the approximation solvability method and the weak topology. This combination enables getting the result without any requirements for compactness of the right-hand side or of the cosine family generated by the linear operator.
References:
[1] Andres, J., Malaguti, L., Pavlačková, M.: On second-order boundary value problems in Banach spaces: a bound sets approach. Topol. Methods Nonlinear Anal. 37 (2) (2011), 303–341. MR 2849825
[2] Andres, J., Malaguti, L., Pavlačková, M.: A Scorza-Dragoni approach to second-order boundary value problems in abstract spaces. Appl. Math. Inf. Sci. 6 (2) (2012), 29–44. MR 2914078
[3] Balachandran, K., Park, J.Y.: Existence of solutions of second order nonlinear differential equations with nonlocal conditions in Banach spaces. Indian J. Pure Appl. Math. 32 (12) (2001), 1883–1891. MR 1879632
[4] Benchohra, M., Nieto, J.J., Rezoug, N.: Second order evolution equations with nonlocal conditions. Demonstr. Math. 50 (2017), 309–319. DOI 10.1515/dema-2017-0029 | MR 3742568
[5] Benchohra, M., Rezoug, N., Samet, B., Zhou, Y.: Second order semilinear Volterra-type integro-differential equations with non-instantaneous impulses. Mathematics 7 (12) (2019), 20 pp., art. no. 1134. DOI 10.3390/math7121134
[6] Benedetti, I., Loi, N.V., Malaguti, L., Obukhovskii, V.: An approximation solvability method for nonlocal differential problems in Hilbert spaces. Commun. Contemp. Math. 19 (2) (2017), 34 pp. MR 3611657
[7] Benedetti, I., Loi, N.V., Malaguti, L., Taddei, V.: Nonlocal diffusion second order partial differential equations. J. Differential Equations 262 (2007), 1499–1523. DOI 10.1016/j.jde.2016.10.019 | MR 3582201
[8] Benedetti, I., Loi, N.V., Taddei, V.: An approximation solvability method for nonlocal semilinear differential problems in Banach spaces. Discrete Contin. Dyn. Syst. Ser. A 37 (6) (2017), 2977–2998. DOI 10.3934/dcds.2017128 | MR 3622071
[9] Benedetti, I., Malaguti, L., Taddei, V.: Nonlocal semilinear evolution equations without strong compactness: theory and applications. Rend. Istit. Mat. Univ. Trieste 44 (2012), 371–388. MR 3047115
[10] Bochner, S., Taylor, A.E.: Linear functionals on certain spaces of abstractly valued functions. Ann. Math. 39 (1938), 913–944. DOI 10.2307/1968472
[11] Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract cauchy problem in a Banach space. Appl. Anal. 40 (1) (1991), 11–19. DOI 10.1080/00036819008839989
[12] Cardinali, T., Gentili, S.: An existence theorem for a non-autonomous second order nonlocal multivalued problem. Stud. Univ. Babeş-Bolyai Math. 62 (1) (2017), 101–117. DOI 10.24193/subbmath.2017.0008 | MR 3627069
[13] Cernea, A.: A note on the solutions of a second-order evolution in non separable Banach spaces. Comment. Math. Univ. Carolin. 58 (3) (2017), 307–314. MR 3708775
[14] Henríquez, H.R., Poblete, V., Pozo, J.: Mild solutions of non-autonomous second order problems with nonlocal initial conditions. J. Math. Anal. Appl. 412 (2014), 1064–1083. DOI 10.1016/j.jmaa.2013.10.086 | MR 3147269
[15] Hernández, E.M., Henríquez, H.R.: Global solutions for a functional second order abstract Cauchy problem with nonlocal conditions. Ann. Polon. Math. 83 (2) (2004), 149–170. DOI 10.4064/ap83-2-6 | MR 2111405
[16] Hernández, E.M., Henríquez, H.R.: Existence results for second order differential equations with nonlocal conditions in Banach spaces. Funkcial. Ekvac. 52 (1) (2009), 113–137. DOI 10.1619/fesi.52.113 | MR 2538282
[17] Kakutani, S.A.: Generalization of Brouwer’s fixed point theorem. Duke Math. J. 8 (1941), 451–459. DOI 10.1215/S0012-7094-41-00838-4
[18] Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing multivalued maps and semilinear differential inclusions in Banach spaces. W. de Gruyter, Berlin, 2001. MR 1831201
[19] Malaguti, L., Perrotta, S., Taddei, V.: $ L^p $ exact controllability of partial differential equations with nonlocal terms. Evol. Equ. Control Theory 11 (5) (2022), 1533–1564. DOI 10.3934/eect.2021053 | MR 4475865
[20] Pavlačková, M., Taddei, V.: Mild solutions of second-order semilinear impulsive differential inclusions in Banach spaces. Mathematics 10 (672) (2022). DOI 10.3390/math10040672
[21] Tidke, H.L., Dhakne, M.B.: Global existence of mild solutions of second order nonlinear Volterra integrodifferential equations in Banach spaces. Differ. Equ. Dyn. Syst. 17 (4) (2009), 331–342. DOI 10.1007/s12591-009-0024-8 | MR 2610901
[22] Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hungar. 32 (1–2) (1978), 75–96. DOI 10.1007/BF01902205
[23] Wu, J.: Theory and application of partial functional differential equations. Springer-Verlag, New York, 1996.
[24] Xiao, J.-Z., Zhu, X.-H., Cheng, R.: The solution sets for second order semilinear impulsive multivalued boundary value problems. Comput. Math. Appl. 64 (2) (2012), 147–160. DOI 10.1016/j.camwa.2012.02.015 | MR 2928211
Partner of
EuDML logo