[1] Andres, J., Malaguti, L., Pavlačková, M.:
On second-order boundary value problems in Banach spaces: a bound sets approach. Topol. Methods Nonlinear Anal. 37 (2) (2011), 303–341.
MR 2849825
[2] Andres, J., Malaguti, L., Pavlačková, M.:
A Scorza-Dragoni approach to second-order boundary value problems in abstract spaces. Appl. Math. Inf. Sci. 6 (2) (2012), 29–44.
MR 2914078
[3] Balachandran, K., Park, J.Y.:
Existence of solutions of second order nonlinear differential equations with nonlocal conditions in Banach spaces. Indian J. Pure Appl. Math. 32 (12) (2001), 1883–1891.
MR 1879632
[5] Benchohra, M., Rezoug, N., Samet, B., Zhou, Y.:
Second order semilinear Volterra-type integro-differential equations with non-instantaneous impulses. Mathematics 7 (12) (2019), 20 pp., art. no. 1134.
DOI 10.3390/math7121134
[6] Benedetti, I., Loi, N.V., Malaguti, L., Obukhovskii, V.:
An approximation solvability method for nonlocal differential problems in Hilbert spaces. Commun. Contemp. Math. 19 (2) (2017), 34 pp.
MR 3611657
[7] Benedetti, I., Loi, N.V., Malaguti, L., Taddei, V.:
Nonlocal diffusion second order partial differential equations. J. Differential Equations 262 (2007), 1499–1523.
DOI 10.1016/j.jde.2016.10.019 |
MR 3582201
[8] Benedetti, I., Loi, N.V., Taddei, V.:
An approximation solvability method for nonlocal semilinear differential problems in Banach spaces. Discrete Contin. Dyn. Syst. Ser. A 37 (6) (2017), 2977–2998.
DOI 10.3934/dcds.2017128 |
MR 3622071
[9] Benedetti, I., Malaguti, L., Taddei, V.:
Nonlocal semilinear evolution equations without strong compactness: theory and applications. Rend. Istit. Mat. Univ. Trieste 44 (2012), 371–388.
MR 3047115
[10] Bochner, S., Taylor, A.E.:
Linear functionals on certain spaces of abstractly valued functions. Ann. Math. 39 (1938), 913–944.
DOI 10.2307/1968472
[11] Byszewski, L., Lakshmikantham, V.:
Theorem about the existence and uniqueness of a solution of a nonlocal abstract cauchy problem in a Banach space. Appl. Anal. 40 (1) (1991), 11–19.
DOI 10.1080/00036819008839989
[12] Cardinali, T., Gentili, S.:
An existence theorem for a non-autonomous second order nonlocal multivalued problem. Stud. Univ. Babeş-Bolyai Math. 62 (1) (2017), 101–117.
DOI 10.24193/subbmath.2017.0008 |
MR 3627069
[13] Cernea, A.:
A note on the solutions of a second-order evolution in non separable Banach spaces. Comment. Math. Univ. Carolin. 58 (3) (2017), 307–314.
MR 3708775
[14] Henríquez, H.R., Poblete, V., Pozo, J.:
Mild solutions of non-autonomous second order problems with nonlocal initial conditions. J. Math. Anal. Appl. 412 (2014), 1064–1083.
DOI 10.1016/j.jmaa.2013.10.086 |
MR 3147269
[15] Hernández, E.M., Henríquez, H.R.:
Global solutions for a functional second order abstract Cauchy problem with nonlocal conditions. Ann. Polon. Math. 83 (2) (2004), 149–170.
DOI 10.4064/ap83-2-6 |
MR 2111405
[16] Hernández, E.M., Henríquez, H.R.:
Existence results for second order differential equations with nonlocal conditions in Banach spaces. Funkcial. Ekvac. 52 (1) (2009), 113–137.
DOI 10.1619/fesi.52.113 |
MR 2538282
[18] Kamenskii, M., Obukhovskii, V., Zecca, P.:
Condensing multivalued maps and semilinear differential inclusions in Banach spaces. W. de Gruyter, Berlin, 2001.
MR 1831201
[19] Malaguti, L., Perrotta, S., Taddei, V.:
$ L^p $ exact controllability of partial differential equations with nonlocal terms. Evol. Equ. Control Theory 11 (5) (2022), 1533–1564.
DOI 10.3934/eect.2021053 |
MR 4475865
[20] Pavlačková, M., Taddei, V.:
Mild solutions of second-order semilinear impulsive differential inclusions in Banach spaces. Mathematics 10 (672) (2022).
DOI 10.3390/math10040672
[21] Tidke, H.L., Dhakne, M.B.:
Global existence of mild solutions of second order nonlinear Volterra integrodifferential equations in Banach spaces. Differ. Equ. Dyn. Syst. 17 (4) (2009), 331–342.
DOI 10.1007/s12591-009-0024-8 |
MR 2610901
[22] Travis, C.C., Webb, G.F.:
Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hungar. 32 (1–2) (1978), 75–96.
DOI 10.1007/BF01902205
[23] Wu, J.: Theory and application of partial functional differential equations. Springer-Verlag, New York, 1996.
[24] Xiao, J.-Z., Zhu, X.-H., Cheng, R.:
The solution sets for second order semilinear impulsive multivalued boundary value problems. Comput. Math. Appl. 64 (2) (2012), 147–160.
DOI 10.1016/j.camwa.2012.02.015 |
MR 2928211